# Ay 1 – Lecture 2 **Starting the Exploration**

#### 2.1 Distances and Scales



#### **Some Commonly Used Units**

#### • Distance:

- Astronomical unit: the distance from the Earth to the Sun, 1 au =  $1.496 \times 10^{13}$  cm ~  $1.5 \times 10^{13}$  cm
- Light year:  $c \times 1 \text{ yr}$ ,  $1 \text{ ly} = 9.463 \times 10^{17} \text{ cm} \sim 10^{18} \text{ cm}$
- Parsec: the distance from which 1 au subtends an angle of 1 arcsec,

```
1 pc = 3.086 \times 10^{18} cm \sim 3 \times 10^{18} cm
```

$$1 \text{ pc} = 3.26 \text{ ly} \sim 3 \text{ ly}$$

1 pc = 
$$206,264.8$$
 au  $\sim 2 \times 10^5$  au

#### • Mass and Luminosity:

- Solar mass:  $1 \text{ M}_{\odot} = 1.989 \times 10^{33} \text{ g} \sim 2 \times 10^{33} \text{ g}$
- Solar luminosity:  $1 L_{\odot} = 3.826 \times 10^{33} \text{ erg/s} \sim 4 \times 10^{33} \text{ erg/s}$

#### The Scale of the Solar System



#### **Stellar Distances**





# Our Extragalactic Neighborhood





#### **Distances and Parallaxes**

- Distances are necessary in order to convert apparent, measured quantities into absolute, physical ones (e.g., luminosity, size, mass...)
- Stellar parallax is *the only* direct way of measuring distances in astronomy! Nearly everything else provides relative distances and requires a basic calibration
- Small-angle formula applies:

**D** [pc] = 
$$1 / \pi$$
 [arcsec]

 Limited by the available astrometric accuracy (~ 1 mas, i.e., D < 1 kpc or so, now)</li>



#### How Far Can We Measure Parallaxes?

Since nearest stars are > 1 pc away, and ground-based telescopes have a seeing-limited resolution of  $\sim 1$  arcsec,

measuring parallaxes is hard.



1838: Bessel measured  $\pi = 0.316$  arcsec for star 61 Cyg (modern value  $\pi = 0.29$  arcsec)



Current ground-based: best errors of ~ 0.001 arcsec

#### How Far Can We Measure Parallaxes?

Gaia satellite (launched 2013) is measuring the positions and proper motions of  $\sim 2 \times 10^9$  stars over the entire sky with an accuracy < 0.1 milliarcsec (distances  $\sim 10$  kpc, i.e., most of the Milky Way!) + a lot of other data. It is revolutionizing the stellar and Galactic astronomy.



# The Sky as Seen by Gaia



A synthetic image made from the individual star detections (Gaia DR2)

#### What is in Gaia Data?

(DR2 from 2018; EDR3 in 2020, DR4 in 2022?)

|                                            | # sources in Gaia EDR3 | # sources in Gaia DR2 |
|--------------------------------------------|------------------------|-----------------------|
| Total number of sources                    | 1,811,709,771          | 1,692,919,135         |
| Sources with mean G magnitude              | 1,806,254,432          | 1,692,919,135         |
| Sources with mean GBP-band photometry      | 1,542,033,472          | 1,381,964,755         |
| Sources with mean GRP-band photometry      | 1,554,997,939          | 1,383,551,713         |
| Gaia-CRF sources                           | 1,614,173              | 556,869               |
| Sources with radial velocities             | 7,209,831 (Gaia DR2)   | 7,224,631             |
| Variable sources                           | > DR2                  | 550,737               |
| Known asteroids with epoch data            |                        | 14,099                |
| Effective temperatures (Teff)              |                        | 161,497,595           |
| Extinction (AG) and reddening (E(GBP-GRP)) |                        | 87,733,672            |
| Sources with radius and luminosity         |                        | 76,956,778            |

+ galaxies, quasars, gravitational lenses, ...

Parallax uncertainties  $\sim 0.04$  milliarcsec (D $\sim 25$  kpc) at G < 15 mag,  $\sim 0.1$  mas (10 kpc) at G=17 mag,  $\sim 0.7$  mas (1.4 kpc) at G = 20 mag, and will get better



#### A parsec is...

- A. Radius of the Earth's orbit
- B. About 10 <sup>27</sup> cm
- C. Angle corresponding to the size of the Earth's orbit from 1 light year away
- D. About  $3 \times 10^{18}$  cm
- E. About 200,000 astronomical units

## Distances to stars in our Galaxy range

- A. From  $\sim 0.001$  to  $\sim 50$  kpc
- B. From  $\sim 10^{18}$  cm to  $\sim 10^{23}$  cm
- C. From  $\sim 1$  to  $\sim 700$  kpc
- D. From  $\sim 1,000$  to  $\sim 50,000$  astronomical units

# 2.2 Kepler's Laws, Newton's Laws, and Dynamics of the Solar System



# Kepler's Laws: 1. The orbits of planets are



- 1. The orbits of planets are elliptical, with the Sun at a focus
- 2. Radius vectors of planets sweep out equal areas per unit time
- 3. Squares of orbital periods are proportional to cubes of semimajor axes:

$$P^{2}[yr] = a_{pl}^{3}[au]$$

- Derived empirically from Tycho de Brahe's data
- Explained by the Newton's theory of gravity

#### Newton's Laws

- 1. Inertia...
- 1. Inertia... Conservation 2. Force:  $F = m \ a$  laws (E, p, L)
- 3.  $F_{action} = F_{reaction}$ e.g., for a circular motion in grav. field: centifugal force = centripetal force

$$\frac{\text{m V}^2}{\text{R}} = G \frac{\text{m M}}{\text{R}^2}$$

• The law of gravity:

$$F = G \frac{m_1 m_2}{r^2}$$

• Energy:  $E_{total} = E_{kinetic} + E_{potential}$ 

$$\frac{\text{m V}^2}{2} \checkmark \frac{\text{G m M}}{\text{R}} \checkmark \text{(gravitational)}$$

Angular momentum: L = m V R





#### Motions in a Gravitational Field

• Motions of two particles interacting according to the inverse square law are conic sections:



# Why Ellipses?

A rigorous derivation (in polar coordinates) is a bit tedious, but we can have a simple intuitive hint:

Decompose the total velocity v into the radial  $(v_r)$  and tangential  $(v_t)$  components



Consider the total motion as a synchronous combination of a radial and circular harmonic oscillator (recall that the period does not depend on the amplitude)



## **Orbit Sizes and Shapes**

• For bound (elliptical) orbits, the *size* (semimajor axis) depends on the total energy:



• The *shape* (eccentricity) of the orbit depends on the angular momentum:

Circular orbit:
maximum
angular
momentum for
a given energy



## Kepler's 2nd Law: A quick and simple derivation

Angular momentum, at any time:  $L = M_{pl} V r = const.$ 

Thus: Vr = const. (this is also an "adiabatic invariant")

Element of area swept: dA = Vr dt

Sectorial velocity: dA/dt = V r = const.

Independent of M<sub>pl</sub>!

It is a consequence of the conservation of angular momentum.

Planets move slower at the aphelion and faster at the perihelion



#### Kepler's 3rd Law: A quick and simple derivation

$$F_{cp} = G M_{pl} M_{\odot} / (a_{pl} + a_{\odot})^{2}$$

$$\approx G M_{pl} M_{\odot} / a_{pl}^{2}$$

$$(since M_{pl} << M_{\odot}, a_{pl} >> a_{\odot})$$

$$F_{cf} = M_{pl} V_{pl}^{2} / a_{pl}$$

$$= 4 \pi^{2} M_{pl} a_{pl} / P^{2}$$

$$(since V_{pl} = 2 \pi a_{pl} / P)$$

$$O.1 \qquad 1 \qquad 10 \qquad 100$$
Period (yr)

$$F_{cf} = F_{cf} \Rightarrow 4 \pi^{2} a_{pl}^{3} = G M_{\odot} P^{2} \text{ (independent of M. 1)}$$

$$F_{cp} = F_{cf} \rightarrow [4 \pi^2 a_{pl}]^3 = G M_{\odot} P^2$$
 (independent of  $M_{pl}$ !)

Another way:  $E_{kin} = M_{pl}V_{pl}^2 / 2 = E_{pot} \approx G M_{pl}M_{\odot}/a_{pl}$ 

Substitute for  $V_{\rm pl}$ :  $4 \pi^2 a_{\rm pl}^3 = G M_{\odot} P^2$ 

→ It is a consequence of the conservation of energy

#### It Is Actually A Bit More Complex ...

- Kepler's laws are just an approximation: we are treating the whole system as a collection of isolated 2-body problems
- There are *no analytical solutions* for a general problem with > 2 bodies! But there is a good *perturbation theory*, which can produce very precise, but always approximate solutions
  - Discovery of Neptune (1846)
  - Comet impacts on Jupiter
- Relativistic effects can be used to test theory of relativity (e.g., precession of Mercury's orbit





## It Is Actually A Bit More Complex ...

• Dynamical resonances can develop (rotation/revolution periods, asteroids; Kirkwood gaps; etc.)



If you wait long enough, more complex dynamics can occur, including dynamical chaos

(Is Solar System stable?)





# Kepler's 3<sup>rd</sup> law is...

- A. Cubes of orbit sizes ~ squares of orbital periods
- B. Squares of orbit sizes ~ cubes of orbital periods
- C. A consequence of the conservation of energy
- D. A consequence of the conservation of angular momentum

#### The shape of a closed orbit depends on

- A. Total energy
- B. Total angular momentum
- C. Angular momentum for a given energy
- D. None of the above

2.3 Celestial
Coordinate Systems
Time Systems, and
Earth's Rotation







The Equatorial System

The coordinates are Right Ascension (RA, or  $\alpha$ ) and Declination (Dec, or  $\delta$ ), equivalent to the georgaphical longitude and Celestial equator

RA = 0 defined by the Solar position at the Vernal Equinox The Seasonal Change of the Solar Declination



#### **Annual Solar Path**



## The Alt-Az Coordinate System



# Other Common Cellestial Coordinate Systems

**Ecliptic:** projection of the Earth's orbit plane defines the Ecliptic Equator. Sun defines the longitude = 0.



**Galactic:** projection of the mean Galactic plane is close to the agreed-upon Galactic Equator; longitude = 0 close, but not quite at the Galactic center.  $(\alpha,\delta) \rightarrow (l,b)$ 

# Ecliptic (Blue) and Galactic Plane (Red)





#### Synodic and Sidereal Times



As the Earth goes around the Sun, it makes an extra turn. Thus:

Synodic/tropical year = 365.25 (solar) days

Sidereal year = 366.25 sidereal days = 365.25 solar days

Universal time, UT = relative to the Sun, at Grenwich

Local Sidereal Time (LST) = relative to the celestial sphere

= RA now crossing the local meridian (to the South)

#### The Precession of the Equinoxes

- The Earth's rotation axis precesses with a period of ~ 26,000 yrs, caused by the tidal attraction of the Moon and Sun on the the Earth's equatorial bulge
- There is also *nutation* (wobbling of the Earth's rotation axis), with a period of ~ 19 yrs
- Coordinates are specified for a given equinox (e.g., B1950, J2000) and sometimes epoch



## Earth's Orbit, Rotation, and the Ice Ages

**Milankovich Theory:** cyclical variations in Earth-Sun geometry combine to produce variations in the amount of solar energy that reaches Earth, in particular the iceforming regions:

- 1. Changes in obliquity (rotation axis tilt)
- 2. Orbit eccentricity
- 3. Precession

These variations correlate well with the ice ages!





#### The change of seasons is due to...

- A. The tilt of the Earth's rotation axis relative to the celestial equator
- B. The tilt of the Earth's rotation axis relative to the plane of the ecliptic
- C. Eccentricity of the Earth's orbit
- D. Precession of the equinoxes
- E. Human sacrifices

