Ay 1 -Lecture 2

Starting the Exploration

2.1 Distances and Scales

Some Commonly Used Units

- Distance:
- Astronomical unit: the distance from the Earth to the Sun, $1 \mathrm{au}=1.496 \times 10^{13} \mathrm{~cm} \sim 1.5 \times 10^{13} \mathrm{~cm}$
- Light year: c $\times 1 \mathrm{yr}, 1 \mathrm{ly}=9.463 \times 10^{17} \mathrm{~cm} \sim 10^{18} \mathrm{~cm}$
- Parsec: the distance from which 1 au subtends an angle of 1 arcsec ,

$$
\begin{aligned}
& 1 \mathrm{pc}=3.086 \times 10^{18} \mathrm{~cm} \sim 3 \times 10^{18} \mathrm{~cm} \\
& 1 \mathrm{pc}=3.26 \mathrm{ly} \sim 3 \mathrm{ly} \\
& 1 \mathrm{pc}=206,264.8 \mathrm{au} \sim 2 \times 10^{5} \mathrm{au}
\end{aligned}
$$

- Mass and Luminosity:
- Solar mass: $1 \mathrm{M}_{\odot}=1.989 \times 10^{33} \mathrm{~g} \sim 2 \times 10^{33} \mathrm{~g}$
- Solar luminosity: $1 \mathrm{~L}_{\odot}=3.826 \times 10^{33} \mathrm{erg} / \mathrm{s} \sim 4 \times 10^{33} \mathrm{erg} / \mathrm{s}$

The Scale of the Solar System

Stellar Distances

- Nâked ëyejvisible stars
~up to a kpc

Globular clusters ~ few kpc

Our Extragalactic Neighborhood

Magellanic
Clouds ~ 50 kpc

Andromeda galaxy
(M31) ~ 700 kpc

Virgo cluster
$\sim 16 \mathrm{Mpc}$

The Deep Universe: ~ 1 - 10 Gpc

Distances and Parallaxes

- Distances are necessary in order to convert apparent, measured quantities into absolute, physical ones (e.g., luminosity, size, mass...)
- Stellar parallax is the only direct way of measuring distances in astronomy! Nearly everything else provides relative distances and requires a basic calibration
- Small-angle formula applies:

$$
\mathbf{D}[\mathrm{pc}]=\mathbf{1} / \boldsymbol{\pi}[\operatorname{arcsec}]
$$

- Limited by the available astrometric accuracy (~ 1 mas, i.e., $\mathrm{D}<1 \mathrm{kpc}$ or so, now)

How Far Can We Measure Parallaxes?

Since nearest stars are >1 pc away, and ground-based telescopes have a seeing-limited resolution of ~ 1 arcsec, measuring parallaxes is hard.

1838: Bessel measured
$\pi=0.316 \mathrm{arcsec}$ for star 61 Cyg (modern
value $\pi=0.29 \operatorname{arcsec}$)

Current ground-based: best errors of ~ 0.001 arcsec

How Far Can We Measure Parallaxes?

Gaia satellite (launched 2013) is measuring the positions and proper motions of $\sim 2 \times 10^{9}$ stars over the entire sky with an accuracy <0.1 milliarcsec (distances $\sim 10 \mathrm{kpc}$, i.e., most of the Milky Way!) + a lot of other data. It is revolutionizing the stellar and Galactic astronomy.
https://sci.esa.int/web/gaia

The Sky as Seen by Gaia

A synthetic image made from the individual star detections (Gaia DR2)

What is in Gaia Data?

(DR2 from 2018; EDR3 in 2020, DR4 in 2022?)

	\# sources in Gaia EDR3	\# sources in Gaia DR2
Total number of sources	1,811,709,771	1,692,919,135
Sources with mean G magnitude	1,806,254,432	1,692,919,135
Sources with mean GBP-band photometry	1,542,033,472	1,381,964,755
Sources with mean GRP-band photometry	1,554,997,939	1,383,551,713
Gaia-CRF sources	1,614,173	556,869
Sources with radial velocities	7,209,831 (Gaia DR2)	7,224,631
Variable sources	> DR2	550,737
Known asteroids with epoch data		14,099
Effective temperatures (Teff)		161,497,595
Extinction (AG) and reddening (E(GBP-GRP))		87,733,672
Sources with radius and luminosity		76,956,778

+ galaxies, quasars, gravitational lenses, ...
Parallax uncertainties ~ 0.04 milliarcsec ($\mathrm{D} \sim 25 \mathrm{kpc}$) at $\mathrm{G}<15 \mathrm{mag}$, $\sim 0.1 \mathrm{mas}(10 \mathrm{kpc})$ at $\mathrm{G}=17 \mathrm{mag}, \sim 0.7 \mathrm{mas}(1.4 \mathrm{kpc})$ at $\mathrm{G}=20 \mathrm{mag}$, and will get better

A parsec is...

A. Radius of the Earth's orbit
B. About $10{ }^{27} \mathrm{~cm}$
C. Angle corresponding to the size of the Earth's orbit from 1 light year away
D. About $3 \times 10^{18} \mathrm{~cm}$
E. About 200,000 astronomical units

Distances to stars in our Galaxy range

A. From ~ 0.001 to $\sim 50 \mathrm{kpc}$
B. From $\sim 10^{18} \mathrm{~cm}$ to $\sim 10^{23} \mathrm{~cm}$
C. From ~ 1 to $\sim 700 \mathrm{kpc}$
D. From $\sim 1,000$ to $\sim 50,000$ astronomical units

2.2 Kepler' s Laws, Newton' s Laws, and Dynamics of the Solar System

Kepler's nested Platonic solids

Kepler's Laws: 1. The orbits of planets are elliptical, with the Sun at a focus

2. Radius vectors of planets sweep out equal areas per unit time
3. Squares of orbital periods are proportional to cubes of semimajor axes:

$$
\mathrm{P}^{2}[\mathrm{yr}]=\mathrm{a}_{\mathrm{pl}}{ }^{3}[\mathrm{au}]
$$

- Derived empirically from Tycho de Brahe's data
- Explained by the Newton's theory of gravity

Newton' s Laws

1. Inertia...
2. Force: $\mathrm{F}=\mathrm{ma}\} \Rightarrow$
3. $F_{\text {action }}=F_{\text {reaction }}$ e.g., for a circular motion in grav. field: centifugal force $=$ centripetal force

$$
\frac{\mathrm{m} \mathrm{~V}^{2}}{\mathrm{R}}=\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}^{2}}
$$

- The law of gravity:

$$
\mathrm{F}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}
$$

- Energy: $\mathrm{E}_{\text {total }}=\mathrm{E}_{\text {kinetic }}+\mathrm{E}_{\text {potential }}$

$$
\frac{m V^{2}}{2} \int \frac{G m M}{R} \int \text { (gravitational) }
$$

- Angular momentum: $\mathrm{L}=\mathrm{m}$ V R

Conservation
laws (E, $\boldsymbol{p}, \boldsymbol{L}$)

PHILOSOPHIE
NATURALIS
PRINCIPIA MATHEMATICA.

Autore 75 S. NEWT O N, Trin. Coll. Cantab. Soc. Mathefeos
Profeffore Lucafiano, \& Sociecatis Regalis Sodali.
IMPRIMATUR.
S. P EP Y S, Reg. Soc. P R I S ES.

Faliz 5. 1686.

LONDINI,

Juffu Socictatis Regie ac Typis Fofephi Streater. Proftat apud plures Bibliopolas. Anno MDCLXXXVII.

Motions in a Gravitational Field

- Motions of two particles interacting according to the inverse square law are conic sections:

Marginally bound:
$\mathrm{E}_{\text {kin }}=\left|\mathrm{E}_{\mathrm{pot}}\right|$

Bound:

Why Ellipses?

A rigorous derivation (in polar coordinates) is a bit tedious, but we can have a simple intuitive hint:

Decompose the total velocity v into the radial $\left(\mathrm{v}_{\mathrm{r}}\right)$ and tangential $\left(\mathrm{v}_{\mathrm{t}}\right)$ components

Consider the total motion as a synchronous combination of a radial and circular harmonic oscillator
(recall that the period does not depend on the amplitude)

Orbit Sizes and Shapes

- For bound (elliptical) orbits, the size (semimajor axis) depends on the total energy:

$$
\mathrm{E}_{\mathrm{kin}}=0, \mathrm{R}=0
$$

$$
\mathrm{E}_{\mathrm{kin}}=\mathrm{I} \mathrm{E}_{\mathrm{pot}} \mid, \mathrm{R} \rightarrow \infty
$$

$$
\mathrm{E}_{\mathrm{kin}} \rightarrow\left|\mathrm{E}_{\mathrm{pol}}\right|
$$

- The shape (eccentricity) of the orbit depends on the angular momentum:

Circular orbit: maximum angular momentum for a given energy

Radial orbit: zero angular momentum
$\mathrm{L}=0$

Kepler's 2nd Law: A quick and simple derivation

Angular momentum, at any time: $\mathrm{L}=\mathrm{M}_{\mathrm{pl}} V r=$ const. Thus: $V r=$ const. (this is also an "adiabatic invariant")

Element of area swept: $\mathrm{dA}=V r \mathrm{dt}$
Sectorial velocity: $\mathrm{dA} / \mathrm{dt}=V r=$ const .
Independent of M_{pl} !
It is a consequence of the conservation of angular momentum.

Planets move slower at the aphelion and faster at the perihelion

Kepler's 3rd Law: A quick and simple derivation

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cp}}=\mathrm{GM}_{\mathrm{pl}} \mathrm{M}_{\odot} /\left(\mathrm{a}_{\mathrm{pl}}+\mathrm{a}_{\odot}\right)^{2} \\
& \approx \mathrm{GM}_{\mathrm{pl}} \mathrm{M}_{\odot} / \mathrm{a}_{\mathrm{pl}}{ }^{2} \\
& \text { (since } \mathrm{M}_{\mathrm{pl}} \ll \mathrm{M}_{\odot}, \mathrm{a}_{\mathrm{pl}} \gg \mathrm{a}_{\odot} \text {) } \\
& \mathrm{F}_{\mathrm{cf}}=\mathrm{M}_{\mathrm{pl}} V_{\mathrm{pl}}{ }^{2} / \mathrm{a}_{\mathrm{pl}} \\
& =4 \pi^{2} \mathrm{M}_{\mathrm{pl}} \mathrm{a}_{\mathrm{pl}} / \mathrm{P}^{2} \\
& \text { (since } V_{\mathrm{pl}}=2 \pi \mathrm{a}_{\mathrm{pl}} / \mathrm{P} \text {) }
\end{aligned}
$$

$\mathrm{F}_{\mathrm{cp}}=\mathrm{F}_{\mathrm{cf}} \rightarrow 4 \pi^{2} \mathrm{a}_{\mathrm{pl}}^{3}=\mathrm{G} \mathrm{M}_{\odot} \mathrm{P}^{2}$ (independent of $\mathrm{M}_{\mathrm{pl}}!$)
Another way: $\quad \mathrm{E}_{\mathrm{kin}}=\mathrm{M}_{\mathrm{pl}} V_{\mathrm{pl}}{ }^{2} / 2=\mathrm{E}_{\mathrm{pot}} \approx \mathrm{G}_{\mathrm{pl}} \mathrm{M}_{\odot} / \mathrm{a}_{\mathrm{pl}}$
Substitute for $V_{\mathrm{pl}}: 4 \pi^{2} \mathrm{a}_{\mathrm{pl}}{ }^{3}=\mathrm{GM}_{\odot} \mathrm{P}^{2}$
\rightarrow It is a consequence of the conservation of energy

It Is Actually A Bit More Complex ...

- Kepler' s laws are just an approximation: we are treating the whole system as a collection of isolated 2-body problems
- There are no analytical solutions for a general problem with >2 bodies! But there is a good perturbation theory, which can produce very precise, but always approximate solutions
- Discovery of Neptune (1846)
- Comet impacts on Jupiter
- Relativistic effects can be used to test theory of relativity (e.g., precession of Mercury's orbit

It Is Actually A Bit More Complex ...

- Dynamical resonances can develop (rotation/revolution periods, asteroids; Kirkwood gaps; etc.)

- If you wait long enough, more complex dynamics can occur, including dynamical chaos
(Is Solar System stable?)

Kepler's $3^{\text {rd }}$ law is...

A. Cubes of orbit sizes \sim squares of orbital periods
B. Squares of orbit sizes \sim cubes of orbital periods
C. A consequence of the conservation of energy
D. A consequence of the conservation of angular momentum

The shape of a closed orbit depends on

A. Total energy
B. Total angular momentum
C. Angular momentum for a given energy
D. None of the above

2.3 Celestial
 Coordinate Systems Time Systems, and Earth's Rotation

The Celestial Sphere

Think of it as an outward projection of the terrestrial long-lat coordinate system onto the sky
\rightarrow the Equatorial System

The Seasonal Change of the Solar Declination

Annual Solar Path

Right ascension (hr)

The Alt-Az Coordinate System

It is obviously

East

Other Common Cellestial Coordinate Systems

Ecliptic: projection of the Earth's orbit plane defines the Ecliptic Equator. Sun defines the longitude $=0$.

Galactic: projection of the mean Galactic plane is close to the agreed-upon Galactic Equator; longitude $=0$ close, but not quite at the Galactic center. $(\alpha, \delta) \rightarrow(l, b)$

Ecliptic (Blue) and Galactic Plane (Red)
InfraRed Sky
IRAS

相

Synodic and Sidereal Times

Synodic = relative to the Sun Sidereal $=$ relative to the stars

As the Earth goes around the Sun, it makes an extra turn. Thus:
Synodic/tropical year $=365.25$ (solar) days
Sidereal year $=366.25$ sidereal days $=365.25$ solar days
Universal time, UT = relative to the Sun, at Grenwich
Local Sidereal Time $(\mathrm{LST})=$ relative to the celestial sphere
$=$ RA now crossing the local meridian (to the South)

The Precession of the Equinoxes

- The Earth' s rotation axis precesses with a period of ~ 26,000 yrs, caused by the tidal attraction of the Moon and Sun on the the Earth' s equatorial bulge
- There is also nutation (wobbling of the Earth's rotation axis), with a period of $\sim 19 \mathrm{yrs}$
- Coordinates are specified for a given equinox (e.g., B1950, J2000) and sometimes epoch

VEGA *
(Future North Star)

- POLARIS
(Current North Star)

Earth's Orbit, Rotation, and the Ice Ages

Milankovich Theory: cyclical variations in Earth-Sun geometry combine to produce variations in the amount of solar energy that reaches Earth, in particular the iceforming regions:

1. Changes in obliquity (rotation axis tilt)
2. Orbit eccentricity
3. Precession

These variations correlate well with the ice ages!

The change of seasons is due to...

A. The tilt of the Earth's rotation axis relative to the celestial equator
B. The tilt of the Earth's rotation axis relative to the plane of the ecliptic
C. Eccentricity of the Earth's orbit
D. Precession of the equinoxes
E. Human sacrifices

