Ay 1 – Lecture 6

Other Worlds: Our Solar System and the Others

6.1 Contents of the Solar System

Venus

Mars

Earth and moon

Planetary Demographics

Name	Distance from Sun (AU) ^[2]	Revolution Period (y)	Diameter (km)	Mass (10 ²³ kg)	Density (g/cm ³) ^[3]
Mercury	0.39	0.24	4,878	3.3	5.4
Venus	0.72	0.62	12,120	48.7	5.2
Earth	1.00	1.00	12,756	59.8	5.5
Mars	1.52	1.88	6,787	6.4	3.9
Jupiter	5.20	11.86	142,984	18,991	1.3
Saturn	9.54	29.46	120,536	5686	0.7
Uranus	19.18	84.07	51,118	866	1.3
Neptune	30.06	164.82	49,660	1030	1.6

Three Kinds of Planets

- Rocky: inner Solar system, smaller, high density, composed of heavier elements
 - Mercury, Venus, Earth, Mars
- Gas giants: Outer Solar system, large, massive, lower densities, lighter elements are abundant
 - Jupiter, Saturn, Uranus, Neptune
- Dwarf planets: Very Outer Solar system, low mass, small, icy
 - Pluto, Sedna, Eris, Makemake, Ceres, etc.

< Magellan Radar

Pioneer UV

Runaway Greenhouse Effect on Venus

			Gas	Earth	Venus r
			Carbon dioxide (CO ₂)	0.03%	96%
Height (km)	-		Nitrogen (N ₂)	78.1%	3.5%
	100 -	Manager	Argon (Ar)	0.93%	0.006%
		Mesosphere	Oxygen (O ₂)	21.0%	0.003%
			Neon (Ne)	0.002%	0.001%
		Stratosphere			
	50 -	H ₂ SO ₄ Clouds Sulfur? C	Clouds		
	CO ₂	Transcendence			
	- Volcano	Troposphere			
	0	200 300 400 500 600 7	00		
		Temperature (K)			

Earth's Moon

Water on Mars

Jupiter's Moons

Ganymede

Saturn' s Moons

Enceladus

Contraction and

Edge of Channel

>Flow Patterns

Drainage Channel

15 cm (6 inches) -

Oceans under the ice crust

on Europa and Enceladus

Uranus

Neptune

the the

Pluto and Charon

Pluto Killer (Mike Brown)

Planet Nine (?)

Predicted by Konstantin Batygin and Mike Brown (but not yet discovered)

Larger Moons in the Solar System

Earth Jupiter Uranus Neptune Pluto Eris Saturn Puck Mimas Proteus Dysnomia Charon Miranda Moon Enceladus lo Tethys Ariel Triton Dione Europa Umbriel 8 Nereid Rhea Titania Oberon Ganymede Titan 0 Hyperion lapetus Callisto . Phoebe Earth

Largest known trans-Neptunian objects (TNOs)

Orbits in the Solar System

Asteroids: Leftover Rocky Planetesimals

Gaspra by Galileo

Mathilda by NEAR

30 km

Eros by Vesta

Ida by Galileo

Comets: Leftover Icy Planetesimals

Hartle 2

Orbit of Binary Kuiper Belt Object 1998 WW31

Kuiper Belt and outer Solar System planetary orbits

Pluto's

Zodiacal Dust: Leftover Protoplanetary Disk Dust

6.2 Formation of the Solar System

4837

The Idea of Planetesimals and the Origin of the Solar System

Everywhere in the solar nebula, tiny pieces of matter started condensing from the gas

Eventually, these planetesimals collected into objects the size of planets. Gravity got into the act when the planetesimals got big At different places in the solar nebula, these "little bits of grit" were different compounds

These small pieces of matter stuck to others, making larger sized blocks (the **planetesimals**)

Masses and Compositions of the Major Planets

- At the location of the terrestrial planets, there was not much mass in the planetesimals, since they were formed of heavier, non-abundant elements
- In the outer solar system, there was more mass in the planetesimals, since they were formed of abundant, hydrogen-bearing compounds. Apparently, they produced more massive planetesimals that incorporated the hydrogen and helium gas that makes up most of Jupiter and Saturn
- At the position of the Earth, only silicates and other more "refractory" substances would have precipitated from the vapor state. At Jupiter and beyond, ices of water, ammonia, methane, would have condensed

Composition of the Gas Giant Planets

Jupiter

Late Heavy Bombardment

The Origin of the Moon

A Mars-sized protoplanet colliding with the proto-Earth

Moon condenses from the debris

(Courtesy of A. G. W. Cameron, Harvard College Observatory.)

Explains:

- Lunar composition
- Tilt of the Earth's axis

Cretaceous-Tertiary Impact Extinction

The Impacts Continue

Tunguska >

Large meteor crater, Arizona

When Did the Planets Form?

- Some isotopes decay into other nuclei
- A half-life is the time for half the nuclei in a substance to decay
- Relative abundances of these isotopes then give us the age
- Radiometric dating tells us that oldest moon rocks are 4.4 billion years old
- Oldest meteorites are 4.55 billion years old
- Planets probably formed ~ 4.6 billion years ago

Brown Dwarfs: Between Stars and Planets

Insufficiently massive to ignite nuclear reactions in the core $M_{bd} < 0.085 M_{\odot}$

The Kelvin-Helmholtz Mechanism

As a planet cools, it shrinks

The release of the binding energy produces heat, that radiates away

For example, Jupiter, and all brown dwarfs

Total binding energy available divided by the luminosity gives the *Kelvin-Helmholtz time scale* For Sun, that is ~ 18 million years

6.3 Planetary Atmospheres

How do you obtain an atmosphere?

- Gain volatiles by comet impacts
- Outgassing during differentiation
- Ongoing outgassing by volcanoes

Keeping an Atmosphere

Atmosphere is *kept* by the world's gravity

- Low mass worlds = low gravity = almost no atmosphere
- High mass worlds = high gravity = thick atmosphere

Why are the winds blowing? The answer, my friends, is...

• Heated air rises at equator

- Maximum
 Sun warming
- Cooler air descends at poles

The planetary rotation also plays a role:

- On Earth the large circulation cell breaks up into 3 smaller ones, moving diagonally
- Other worlds have more or firmulation cells depending on their rotation rate

circulation cells Southern Hemisphere Not to scale! circulation cells

Northern Hemisphere

