Ay 1 - Lecture 6

 4ef rimaty Other Worids:Our Solar System and the Others

Close-up of Inner Solar System

Orbits to scale: planet sizes exaggerated about one million. Sun not to scale.

Planetary Demographics

Name	Distance from Sun (AU)	Revolution Period (y)	Diameter (km)	$\begin{gathered} \text { Mass } \\ \left(10^{23} \mathrm{~kg}\right) \end{gathered}$	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{g} / \mathrm{cm}^{3}\right)^{-3} \end{aligned}$
Mercury	0.39	0.24	4,878	3.3	5.4
Venus	0.72	0.62	12,120	48.7	5.2
Earth	1.00	1.00	12,756	59.8	5.5
Mars	1.52	1.88	6,787	6.4	3.9
Jupiter	5.20	11.86	142,984	18,991	1.3
Saturn	9.54	29.46	120,536	5686	0.7
Uranus	19.18	84.07	51,118	866	1.3
Neptune	30.06	164.82	49,660	1030	1.6

Planetary Science. closer to geology than astronomy

Three Kinds of Planets

- Rocky: inner Solar system, smaller, high density, composed of heavier elements
- Mercury, Venus, Earth, Mars
- Gas giants: Outer Solar system, large, massive, lower densities, lighter elements are abundant
- Jupiter, Saturn, Uranus, Neptune
- Dwarf planets: Very Outer Solar system, low mass, small, icy
- Pluto, Sedna, Eris, Makemake, Ceres, etc.

Runaway Greenhouse Effect on Venus

Jupiter

Saturn

Saturn' s Moons

Enceladus

Titan

Oceans under the ice crust

 and Enceladus

Uranus

Neptune

Pluto and Charon

Pluto Killer (Mike Brown)

Planet Nine (?)

Predicted by Konstantin Batygin and Mike Brown (but'not yet discovered)

Larger Moons in the Solar System

Earth

Moon

Uranus Neptune Pluto Eris

Dysnomia

Largest known trans-Neptunian objects (TNOs)

Eris

Makemake

Haumea

Sedna

Quaoar

Orbits in the Solar System

Asteroids: Leftover Rocky Planetesimals

Gaspra by Galileo

Eros by Vesta

Ida by Galileo

Comets: Leftover Icy Planetesimals

Zodiacal Dust:

 Leftover Protoplanetary Disk Dust

6.2 Formation of the Solar System

The Idea of Planetesimals and the Origin of the Solar System

Everywhere in the solar nebula, tiny pieces of matter started condensing from the gas

Eventually, these planetesimals collected into objects the size of planets. Gravity got into the act when the planetesimals got big

At different places in the solar nebula, these "little bits of grit" were different compounds

These small pieces of matter stuck to others, making larger sized blocks (the planetesimals)

Fomalhaut

 HST ACS/HRC
Dust ring

No data
Scattered

Large planetesimals have probably already formed in here

No data

< Background Star

$$
\begin{aligned}
& \text { Location of } \\
& \text { Eomalhaut }
\end{aligned}>\cdots \quad \begin{gathered}
\text { starlight } \\
\text { "noise" }
\end{gathered}
$$

Masses and Compositions of the Major Planets

- At the location of the terrestrial planets, there was not much mass in the planetesimals, since they were formed of heavier, non-abundant elements
- In the outer solar system, there was more mass in the planetesimals, since they were formed of abundant, hydrogen-bearing compounds. Apparently, they produced more massive planetesimals that incorporated the hydrogen and helium gas that makes up most of Jupiter and Saturn
- At the position of the Earth, only silicates and other more "refractory" substances would have precipitated from the vapor state. At Jupiter and beyond, ices of water, ammonia, methane, would have condensed

Composition of the Gas Giant Planets

Late Heavy Bombardment

The Origin of the Moon

A Mars-sized protoplanet colliding with the proto-Earth

Moon condenses from the debris

Explains:

- Lunar composition
- Tilt of the Earth's axis

[^0]
Cretaceous-Tertiary Impact Extinction

The Impacts Continue

Tunguska >

Large meteor crater, Arizona

When Did the Planets Form?

- Some isotopes decay into other nuclei
- A half-life is the time for half the nuclei in a substance to decay
- Relative abundances of these isotopes then give us the age
time since rock formed (billions of years)
- Radiometric dating tells us that oldest moon rocks are 4.4 billion years old
- Oldest meteorites are 4.55 billion years old
- Planets probably formed ~ 4.6 billion years ago

Brown Dwarfs: Between Stars and Planets

Inșufficiently massive to ignite nuclear reactions in the core
$\mathrm{M}_{\mathrm{bd}}<0.085 \mathrm{M}_{\odot}$

The Kelvin-Helmholtz Mechanism

As a planet cools, it shrinks
The release of the binding energy produces heat, that radiates away

For example, Jupiter, and all brown dwarfs

Total binding energy available divided by the luminosity gives the Kelvin-Helmholtz time scale For Sun, that is ~ 18 million years

6.3 Planetary Atmospheres

How do you obtain an atmosphere?

- Gain volatiles by comet impacts
- Outgassing during differentiation
- Ongoing outgassing by volcanoes

Keeping an Atmosphere

Atmosphere is kept by the world' s gravity

- Low mass worlds = low gravity $=$ almost no atmosphere
- \quad High mass worlds $=$ high gravity $=$ thick atmosphere

Why are the winds blowing? The answer, my friends, is...

The planetary rotation also plays a role:

Coriolis force

- On Earth the large circulation cell breaks up into 3 smaller ones, moving diagonally
- Other worlds have more or fewer circulation cells depending on their rotation rate

[^0]: (Courtesy of A. G. W. Cameron, Harvard College Observatory.)

