Ay 1 - Lecture 7

Planets Beyond
the Solar System

7.1 Thermodynamics of Planets

Planets in a Thermal Balance

Planet
Radius R Temperature T
$\alpha=$ albedo, fraction of the reflected light (for the Earth, $\alpha \sim 0.3-0.35$)
Fraction of the intercepted luminosity: $\frac{\pi R^{2}}{4 \pi a^{2}}$
Absorbed
luminosity: $\quad \frac{R^{2}}{4 a^{2}}(1-\alpha) L_{\odot}=4 \pi R^{2} \sigma T^{4} \quad \begin{aligned} & \text { Emitted } \\ & \text { luminosity }\end{aligned}$
Stefan-Boltzmann constant $\sigma=5.67 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4}$
Planet's effective
blackbody temperature: $\quad T^{4}=L_{\odot} \frac{(1-\alpha)}{16 \pi \sigma a^{2}}$

Planet's Temperature

$\begin{aligned} & \text { For a given stellar luminosity, it depends } \\ & \text { only on the orbit radius and the albedo }\end{aligned} \quad T^{4}=L_{\odot} \frac{(1-\alpha)}{16 \pi \sigma a^{2}}$
For the Earth: $\alpha \sim 0.33, a \sim 1.5 \times 10^{13} \mathrm{~cm}$

$$
\begin{aligned}
& \sigma=5.67 \times 10^{-5} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4} \\
& L_{\odot}=3.85 \times 10^{33} \mathrm{erg} / \mathrm{s}
\end{aligned}
$$

Estimate $T \sim 253 \mathrm{~K}$

Yet, the actual value is more like $T \sim 287 \mathrm{~K}$. Why?
The answer: the Greenhouse Effect
Various gases in the Earth's atmosphere (mainly CO_{2}) trap some of the thermal infrared emission.
That effectively acts as an additional incoming luminosity. Temperature increases until a new equilibrium is reached.

The Greenhouse Effect

Solar radiation: 343 Watts per m^{2}

Some of the solar Outgoing solar radiation is radiation: 103 reflected by the Watts per m^{2} atmosphere and the Earth's surface

Solar radiation passes through the atmosphere

Radiation is converted to heat energy, causing

Outgoing
Some of the infrared radiation passes through the atmosphere and out into space the emission of longwave (infrared) radiation back to the atmosphere

Earth's Atmosphere Absorption Spectrum

Runaway Greenhouse Effect

If a planet absorbs more heat than it radiates away, the temperature will keep rising until the cooling becomes effective again

Global Warming

< The cause: increasing concentration of the greenhouse gases

The effect > Increasing global temperatures

Global Warming

The 10-year average (2000-2009) global mean temperature anomaly relative to the 1951-1980 mean

Temperature Anomaly (${ }^{\circ} \mathrm{C}$)
$\begin{array}{lllllll}-2.5 & -1.5 & -0.5 & 0 & +0.5 & +1.5 & +2.5\end{array}$

Consequences of the Global Warming

- Average temperature increases
> Antarctic and Greenland ice melts and increases the global ocean level; many coastal areas get submerged

- Climate zones expand from the Equator towards the poles
> Disruption of agriculture, water supply
- Amplitude and frequency of extreme weather events increase
> Major damage, loss of life

There is an Alternative Theory...

Habitable Zones and Goldilock Planets

For a given stellar luminosity, it depends only on the orbit radius and the albedo

$$
T^{4}=L_{\odot} \frac{(1-\alpha)}{16 \pi \sigma a^{2}}
$$

Liquid water can exist if $273 \mathrm{~K}<\mathrm{T}<373 \mathrm{~K}$

\uparrow	\uparrow
Frost line	Steam line

Since the albedo dependence is relatively weak, this defines a range of planetary orbit radii where liquid water (and thus life?) can exist on the surface
7.2 Searching for Exosolar Planets

As of April 2019, there are ~ 4000 confirmed exoplanets known, in ~ 2900 planetary systems, plus another ~ 3500 candidates

By studying other planetary systems we can learn more about our own. One goal is to look for Earth-like planets-

Search Methods for Exosolar Planets

- Direct imaging: extremely difficult, since planets may be a billion times fainter than their parent stars
- Use coronographs and AO to suppress the scattered light
- Image in thermal IR: the brightness ratio is more favorable
- Doppler shift: periodic variation in a star's radial velocity, as the star and the planet orbit a common center of the mass
- Requires extremely precise spectroscopy
- More sensitive to more massive and closer planets
- Eclipses (Transits) as a planet crosses the stellar disk
- Requires an extremely precise photometry
- Gravitational microlensing: a planet changes the light curve of a microlensing event
- Rare, requires monitoring of vast numbers of stars

Direct Imaging

Reflected starlight only

Planet lost in glare of star that is very bright in the visible band.

Mostly thermal emission

Planet more luminous in the infrared band and star not so bright.
< Coronographic image of Fomalhaut
< Comparing images 2 years apart shows the planet moving

1 November 2009, L' band

Direct Imaging

Using coronographic imaging and adaptive optics in near-IR

Pulsar Planets: "Rocks Around the Clock"

Precision timing of pulsars can be used to measure changes is their radial velocity. A planetary system around P.SR $1257+12$ was found in 1992 by Wolszczan \& Frail

Radial Velocity Method

Both the star and the planet orbit the common center of mass:
$M_{\text {planet }} V_{\text {planet }}=M_{\text {star }} V_{\text {star }}$
Observe variations in the star' s radial velocity as the whole system moves in space:

For example:
$M_{\text {Earth }} / M_{\odot} \approx 3 \times 10^{-6}$
$V_{\text {Earth }}=30 \mathrm{~km} / \mathrm{s} \quad V_{\odot} \approx 9 \mathrm{~cm} / \mathrm{s}$
But consider a planet with
$M_{\text {planet }}=10 M_{\text {jupiter }}$ in a Mercury's
orbit. Then $V_{\text {star }} \approx 460 \mathrm{~m} / \mathrm{s}$
State of the art precision $\sim 1 \mathrm{~m} / \mathrm{s}$

51 Pegasi b - the first confirmed exoplanet (1995)

Discovered using the radial velocity technique

An example of a "Hot Jupiter"

Planetary Transits (Eclipses)

An Earth-sized planet crossing a Sun-like stellar disk would cause a 10^{-4} eclipse \rightarrow need a very high precision photometry

Kepler light curve of HD 179070

Kepler Mission

Kepler

Field of

TESS

TRANSITING EXOPLANET SURVEY SATELLITE

DISCOVERING NEW EARTHS AND SUPER-EARTHS

Gravitational Microlensing

Background star

Observer sees a light curve like this

Cumulative Detections Per Year

18 Apr 2019

Discovery Year

7.3 Studying Other Worlds

A Planet Orbiting Proxima Centauri b

Comparing Planetary Systems

Kepler-62 System

Solar System

The Trappist-1 Planetary System

Characterizing Exoplanets

From radial velocities:

- Measure velocity, period, thus the size of the orbit, infer the mass using Kepler's laws
- Also infer orbital shape (eccentricity)

From transits:

- Infer planetary radii, thus densities, possible composition
- From the proximity to the star, infer the temperature
- Measure the composition of the atmosphere

Census of Exoplanet Properties

Larger and more massive planets are easier to find, so there is a selection effect against the smaller ones

(Howard 2013)

Mass - Period Distribution

18 Apr 2019
exoplanetarchive.ipac.caltech.edu

Distribution of orbit

 semimajor axesPlanets closer in are easier to find, so there is a selection effect against the more distant tones

Kepler Survey: Planets are Common!

Exoplanet Populations

- Radial Velocity
- Transit
- Imaging

Microlensing

- Pulsar Timing
- Kepler

Kepler Habitable Zone Planets

Planets in the Habitable Zones

Current Potentially Habitable Exoplanets

Ranked in Order of Similarity to Earth

1. Gliese 667C c

2. Gliese 180 c*

3. HD 40307 g

4. Kepler-62 e

5. Gliese 667C f

6. Kepler-61 b
7. Kepler-62 f
8. Kepler-186 f

9. Kepler-283 c

10. Gliese 581 g *

11. Gliese 422 b*

12. Kepler-174 d
13. Gliese 667C e

14. Tau Ceti e*

15. Gliese 180 b*

16. Kepler-22 b

17. Gliese 163 c

18. Kepler-298 d

Ne

21. Gliese 581 d
WATER

$$
\begin{aligned}
& \text { YGEN } \\
& \text { WATER } \\
& \text { WAT }
\end{aligned}
$$

TER
| WATER

| WATER $\mathrm{CO2}$

METHANE

\square

Spectroscopic signatures of a habitable exoplanet

Observing the Exoplanet Atmospheres

Subtract the spectra of the star during and out of the eclipse: extra absorption by the planet's atmosphere

Exoplanet Transit Event

(H. Knudsen)

Rogue or Interstellar Planets

7.4 Life in the Universe

Life in the Universe: the Building Blocks

Water and organic compounds (sometimes very complex) are common in the ISM, the material from which planets form

Astrobiology

- Life in extreme environments on the Earth
- E.g., sulphur-based metabolism in the bacteria found near deep undersea vents; inside rocks; deep under ice (lake Vostok), in volcanic lakes, etc.
- Possibilities for life on other planets

Deep undersea vents

Grand Prismatic
Spring, Yellowstone
$<$ Microorganisms found under the ice in lake Vostok, Antarctica

Life Elsewhere in the Solar System?

- Mars once had an ocean and the atmosphere
- Oceans on Europa, Enceladus, and maybe other moons of Jupiter and Saturn
- Volcanoes on Io, Jupiter's radiation belts

Search for ExtraTerrestrial Intelligence

- Assumes that advanced civilizations would communicate by radio...
- SETI@home: a piggyback search using observations from Arecibo, VLA, ATA, etc.
- Or we can send them a postcard:

The Drake Equation
 $$
\mathrm{N}=\mathrm{R}^{*} \cdot \mathrm{f}_{p} \cdot \mathrm{n}_{e} \cdot \mathrm{f}_{l} \cdot \mathrm{f}_{i} \cdot \mathrm{f}_{c} \cdot \mathrm{~L}
$$

$\mathrm{N}=$ The number of civilizations in The Milky Way Galaxy whose electromagnetic emissions are detectable
$\mathrm{R}^{*}=$ The rate of formation of stars suitable for the development of intelligent life
$\mathrm{f}_{p}=$ The fraction of those stars with planetary systems
$n_{e}=$ The number of planets, per solar system, with an environment suitable for life
$\mathrm{f}_{1}=$ The fraction of suitable planets on which life actually appears
$\mathrm{f}_{\mathrm{i}}=$ The fraction of life bearing planets on which intelligent life emerges
$\mathrm{f}_{\mathrm{c}}=$ The fraction of civilizations that develop a technology that releases detectable signs of their existence into space
$\mathrm{L}=$ The length of time such civilizations release detectable signals

The Flake Equation (from XKCD)

The FLAKE EQUATION:

$$
\begin{aligned}
& \text { FRACTION OF PEOPLE WHO } \\
& \text { IMAGINE AN ALIEN ENCOUNtER } \\
& \text { BECAUSE THEY'RE CRAZY OR } \\
& \text { WANT TO FEEL SPECIAL } \\
& \text { PROBABILITY } \\
& \text { THAT THEY'L } \\
& \text { TEL SOMEONE } \\
& \text { AVERaGE NUMBER } \\
& \text { OF PEOPLE EACH } \\
& \text { FRIEND TEAS THIS } \\
& \text { "FIRSTHWD"ACCOUNT } \\
& \text { THE MEANS AND MOTVVTTON } \\
& \text { TO SHARE THE STORY WTo } \\
& \text { A WIPER AUDIENCE (BiOS, } \\
& \text { FORUMS, REPoRTERS) } \\
& \left.P=W_{P} \times \widetilde{\left(C_{R}\right.}+M_{I}\right) \times \stackrel{T_{K}}{T_{K}} \times \tilde{F}_{0} \times{D_{T}}_{F_{1}}^{\hat{\mu}_{0}} \approx 100,000 \\
& \underbrace{(7,000,000,000)}_{\text {WORLD }}(1 / 10000) \underbrace{(1 / 10000)} \\
& \text { WORLD } \\
& \text { POPULATION } \\
& \text { FRACTiON OF PEOPLE WHO } \\
& \text { MISINTERPRET PASSICAL } \\
& \text { OR PHYSiOLOGICAL EXPERIENCE } \\
& \text { AlAN ALIEN SIGHTING } \\
& \text { OF PEOPLE } \\
& \text { THEY TEL } \\
& \text { PROBABILITY THAT ANY } \\
& \text { mETALS NOT sITING THE } \\
& \text { NARRATIVE WILL BE REViSED } \\
& \text { OR FORGOTtEN IN RETElLING }
\end{aligned}
$$

EVEN WITH CONSERVATVE GUESSES FOR THE VALUES OF THE VARIABLES, THIS SUGGESTS THERE MUST BE A HUGE NUMBER OF CREDIBLE-SOUNDING ALIEN SIGHTINGS OUT THERE, AVAILABLE TO ANYONE WHO WANTS TD BELIEVE!

The Fermi Paradox

- Or: Where are they?
- A civilization that can do interstellar travel at velocities $\sim 1 \%$ of the speed of light would still conquer the Galaxy in ~ 10 million years

