Ay 1 – Lecture 8

Stellar Structure and the Sun

8.1 Stellar Structure Basics

How Stars Work

• **Hydrostatic Equilibrium**: gas and radiation pressure balance the gravity

• Thermal Equilibrium: Energy generated = Energy radiated

• Thermonuclear Reactions: The source of the energy

• Energy Transport: How does it get from the core to the surface

Equations of the Stellar Structure

Mass vs. radius:

$$\frac{dm}{dm} = 4\pi r^2 \rho dr$$
$$\frac{dm}{dr} = 4\pi r^2 \rho$$

Luminosity vs. radius:

$$dL = 4\pi r^2 \rho dr \times q$$
$$\frac{dL}{dr} = 4\pi r^2 \rho q$$

q = rate of energy generation per unit mass

Hydrostatic Equilibrium

At a given radius, the gravitational force on a shell is:

The weight of that mass shell over the area has to be the difference between the pressures on an inner and an outer surface of the shell.

$$dm = 4\pi r^2 \rho dr \qquad \qquad \frac{dP}{dr} = -\frac{Gm}{r^2}\rho$$

Pressure of What?

Total pressure: $P = P_{gas} + P_{radiation}$

The equation of state for an ideal gas is: $P_{gas} = nkT$

n = the number of particles per unit volume (ions and electrons)

Or: $P_{gas} = \frac{\rho}{\mu m_{H}} \times kT$ ρ = mass density m_H = the mass of hydrogen atom μ = average particle mass in units of m_H The ideal gas constant: $R \equiv \frac{k}{k}$ m_{H} Depends on the chemical composition. Thus: $P_{gas} = \frac{R}{\mu}\rho T$ Typically $\mu \sim 0.8$

Radiation Pressure

For blackbody radiation:

$$P_r = \frac{1}{3}aT^4$$

...where a is the *radiation constant*:

$$a = \frac{8\pi^5 k^4}{15c^3 h^3} = \frac{4\sigma}{c} = 7.565 \times 10^{-15} \text{ erg cm}^{-3} \text{ K}^{-4}$$

Radiation pressure dominates over the gas pressure inside very massive stars, which are hotter

Equations of Stellar Structure

At radius r in a static, spherically symmetric star and the density ϱ :

$$\frac{dm}{dr} = 4\pi r^2 \rho$$
Mass conservation
$$\frac{dP}{dr} = -\frac{Gm}{r^2} \rho$$
Hydrostatic equilibrium
$$\frac{dT}{dr} = -\frac{3}{4ac} \frac{\kappa \rho}{T^3} \frac{L}{4\pi r^2}$$
Energy transport due to
radiation (only)
$$\frac{dL}{dr} = 4\pi r^2 \rho q$$
Energy generation

4 equations with 4 unknowns - enough for a solution once we know P(Q,T), opacity κ , and q

Some Order-of-Magnitude Estimates

Let's see if we can estimate roughly the conditions in the Solar core. **Pressure** P = F / A:

$$\begin{split} & F \approx G M_{\odot}^{2} / R_{\odot}^{2} \\ & A \approx 4 \pi R_{\odot}^{2} \\ & P \approx G M_{\odot}^{2} / 4 \pi R_{\odot}^{4} \\ & (M_{\odot} \approx 2 \times 10^{33} \text{ g}, R_{\odot} \approx 7 \times 10^{10} \text{ cm}, G \approx 6.7 \times 10^{-8} \text{ cgs}) \\ & \text{Thus: } P_{est} \sim 10^{15} \text{ dyn} / \text{ cm}^{2} \text{ -- and surely an underestimate} \\ & \text{True value: } P_{c} \approx 2 \times 10^{17} \text{ dyn} / \text{ cm}^{2} \end{split}$$

Now the **temperature:** $3/2 k T \approx G m_p M_{\odot} / R$ ($k \approx 1.4 \times 10^{-16} \text{ erg/K}, m_p \approx 1.7 \times 10^{-24} \text{ g}$) Thus: $T_{est} \approx 1.6 \times 10^7 \text{ K}$ True value: $T_c \approx 1.57 \times 10^7 \text{ K}$ -- not bad!

Standard Solar Model

Luminosity (%)

Mass (%)

Standard Solar Model

8.2 Energy Generation in Stars

Energy Production in Stars: Thermonuclear Reactions

Mass of nuclei with several protons and / or neutrons does not exactly equal mass of the constituents - slightly smaller because of the **binding energy** of the nucleus

The main process is hydrogen fusion into helium:

 $4 \times {}^{1}H \rightarrow {}^{4}He + photons and neutrinos$

4 protons, total mass =helium nucleus, mass = $4 \times 1.0081 = 4.0324$ amu4.0039 amu

Mass difference: $0.0285 \text{ amu} = 4.7 \text{ x } 10^{-26} \text{ g}$

 $\Delta E = \Delta Mc^2 = 4.3 \times 10^{-5} \text{ erg} = 27 \text{ MeV}$ Or about 0.7% of the total rest mass

Step 1:

- Two protons (hydrogen nuclei, ¹H) collide.
- One of the protons changes into a neutron (shown in blue), a neutral, nearly massless neutrino (v), and a positively charged electron, or positron (e⁺).
- The proton and neutron form a hydrogen isotope (²H).
- The positron encounters an ordinary electron (e⁻), annihilating both particles and converting them into gamma-ray photons (γ).

Step 2:

- The ²H nucleus from the first step collides with a third proton.
- A helium isotope (³He) is formed and another gamma-ray photon is released.

Step 3:

- Two ³He nuclei collide.
- A different helium isotope with two protons and two neutrons (⁴He) is formed and two protons are released.

(PP III)

Binding Energy Per Nucleon vs. Atomic Number

Energetically favorable Energetically unfavorable

Overcoming the Electrostatic Barrier

What makes the fusion possible is the *quantum tunneling* effect Probability of tunneling increases steeply with particle energy

The Gamow Peak

The most energetic nuclei are the most likely to fuse, but very few of them in a thermal distribution of particle speeds:

Narrow range of energies around the Gamow peak where significant numbers of particles in the plasma are able to fuse. Energy is >> typical thermal energy, so fusion is slow

Thermonuclear Reactions (TNR)

• Burning of H into He is the only energy generation process on the Main Sequence, where stars spend most of their lives; all others happen in post-MS evolutionary stages

– Solar luminosity ~ 4.3 million tons of H into He per second

- In addition to the **p-p cycle**, there is the **CNO Cycle**, in which the C, N, O, nuclei catalyze the burning of H into He
- The rates of TNR are usually very steep functions of temperature, due to high potential barriers
- Generally, more massive stars achieve higher T_c , and can synthesize elements up to Fe; beyond Fe, it happens in SN explosions

Self-Regulation in Stars

Suppose the fusion rate increases slightly. Then,

- (1) Temperature increases
- (2) Pressure increases
- (3) Core expands
- (4) Density and temperature decrease
- (5) Fusion rate decreases

So there's a feedback mechanism which prevents the fusion rate from skyrocketing upward

This is the inverse of the core collapse mechanism discussed for the protostars

8.3 Energy Transport in Stars

> 1.5 solar masses

0.5 - 1.5 solar masses

< 0.5 solar masses

Energy Transport Mechanisms in Stars

How does the energy get out?

- 1. Radiatively (photon diffusion)
- 2. Convectively
- 3. Conduction (generally not important in stars)

... and the reality is fairly complex

Radiative Energy Transfer

- As the heat diffuses from the core outwards, the photons are scattered by the dense plasma inside the star
- For the Sun, it takes
 ~ 250,000 years for
 the energy to reach
 the surface

- The opacity of the plasma depends on the temperature, density, and chemical composition
- If the plasma is too opaque, convection becomes a more efficient mechanism for the energy transfer

When Does the Convection Happen?

The Schwarzschild criterion: Imagine displacing a small mass element vertically upward by a distance dr. Assume that **no heat** is exchanged with the surrounding, i.e. the process is **adiabatic**: •Element expands to stay in pressure

balance

•New density will *not* generally equal the new ambient density

If this mechanical energy transport is more efficient than the radiative case, the medium will be **convectively unstable**

8.4 The Sun, Our Star

Why Study the Sun?

- The nearest star can study it in a greater detail than any others. This can help us understand better the overall stellar physics and phenomenology
 - Radiation transfer, convection
 - Photospheric and chromospheric activity
- Kind of important for the life on Earth ...
 - Solar activity has terrestrial consequences
- A gateway to the neutrino astronomy (and physics)
 - Thermometry of stellar cores and the standard model
 - Neutrino oscillations

A Theoretical Model of the Energy Transfer in the Sun

- Hydrogen fusion takes place in a core extending out to about 0.25 solar radius
- The core is surrounded by a radiative zone extending to about 0.71 solar radius.
 Energy transfer through *radiative diffusion*
- The radiative zone is surrounded by a rather opaque convective zone of gas at relatively low temperature and pressure. Energy transfer through *convection*

We can probe the solar interior using the Sun's own vibrations

- Helioseismology is the study of how the Sun vibrates
- These vibrations have been used to infer pressures, densities, chemical composition, and rotation rates within the Sun
- Major contributions from Caltech (Libbrecht et al.)

Rotation of the Solar Interior

Solar Atmosphere / Surface Layers

- The Sun's atmosphere has three main layers:
 - 1. the photosphere
 - 2. the chromosphere
 - 3. the corona
- The visible surface of the Sun, the photosphere, is the lowest layer in the solar atmosphere

Convection in the photosphere produces granules

Sunspots are low-temperature regions in the photosphere

Sunspots come in groups, and follow the Sun's differential rotation. They start from the higher latitudes and migrate towards the Solar equator.

They correlate well with other manifestations of the Solar activity.

November 9

November 12

November 14

November 15

November 17

- The Sun's surface features (including sunspot numbers) vary in an *11-year cycle*; it is really a *22-year cycle* in which the surface magnetic field increases, decreases, and then increases again with the opposite polarity
- There are probably also longer period cycles

Prominence

Bright areas lie on top of sunspot groups Note the scale: Earth's diameter is < 1% of the Solar diameter Activity in the corona includes coronal mass ejections and coronal holes

The Sun's magnetic field also produces other forms of solar activity

- A solar flare is a brief eruption of hot, ionized gases from a sunspot group
- A coronal mass ejection is a much larger eruption that involves immense amounts of gas from the corona

The Sun is Now Being Monitored by a Number of Satellites and Ground-Based Observatories

←SOHO far-UV composite Yohkoh soft X-ray ↓

Solar Neutrinos and the Birth of Neutrino Astronomy

 Detection of Solar neutrinos offers a unique probe of deep stellar interiors - a fundamental test of our understanding of stars and their energy production

• For many years, there was a factor of 3 discrepancy between the theoretical predictions and the experiment (the "Solar neutrino problem"). The resolution of it provided a fundamental physical insight (neutrino oscillations)

Solar Neutrino Flux

Neutrinos from the main p-p chain are of very low energy. Less important reactions (energetically) yield a smaller flux of higher energy neutrinos:

$$p + e^{-} + p \rightarrow {}^{2}H + v_{e} \qquad \text{`pep' - 1.4 MeV neutrino}$$

$${}^{3}He + p \rightarrow {}^{4}He + e^{+} + v_{e} \qquad 0 - 18.8 \text{ MeV}$$

$$e^{-} + {}^{7}Be \rightarrow {}^{7}Li + v_{e} \qquad 0.383, 0.861 \text{ MeV}$$

$${}^{8}B \rightarrow {}^{8}Be + e^{+} + v_{e} \qquad 0 - 15 \text{ MeV}$$

Since we get 2 neutrinos for each 28 MeV of energy, we can use Solar luminosity to calculate neutrino flux at Earth:

Neutrino flux =
$$\frac{2L_{sun}}{28 \text{ MeV}} \times \frac{1}{4\pi d^2} \sim 6 \times 10^{10} \text{ neutrinos/s/cm}^2$$

Homestake Mine Detector

First attempt to detect Solar neutrinos began in the 1960s:

Detector is a large tank containing 600 tons of C_2Cl_4 , situated at 1500m depth in a mine in South Dakota.

Neutrinos interact with the chlorine to produce a radioactive isotope of argon:

$$v_e + {}^{37}\text{Cl} \rightarrow e^- + {}^{37}\text{Ar}$$

+ an electron which is not observed.

Super Kamiokande Measure: $v_e + e^- \rightarrow v_e + e^-$

look for a Cherenkov radiation from the high energy electrons in ultra-pure water

Neutrino Oscillations

There are 3 flavors of leptons (electron, muon, tau), and the corresponding types of neutrinos:

 Flavor
 Mass

 Electron Neutrino
 m1
 Neutrino1

 Nuon Neutrino
 m2
 Neutrino2

 Tau Neutrino
 m3
 Neutrino3

Neutrinos are a quantum superposition of the 3 types, and oscillate between them

