

Ciro Donalek (Caltech)

Classification







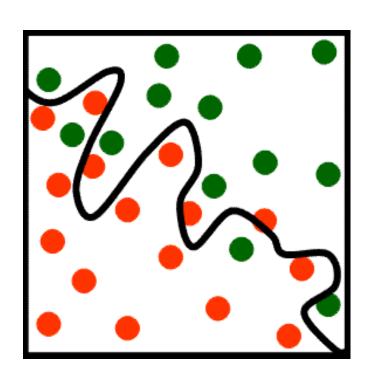
#### Outline

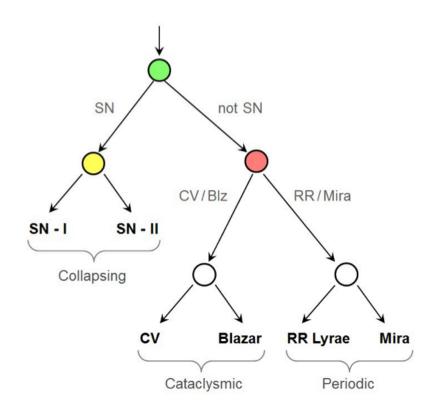
- Supervised Learning: recap
- Classification
- Accuracy and Error Measures
- Evaluation
- Challenges



#### Classification

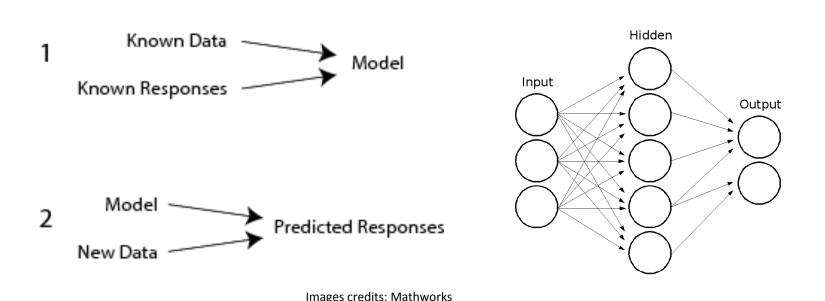
- Assign samples into categories (classes) based on a predictable attribute.
- The goal of classification is to accurately predict the target class for each case in the data set.
- Supervised Learning.





# Recap: Supervised Learning

- For some examples the correct results (targets) are known and are given in input to the model during the learning process.
- Generalization: ability of a learning machine to perform accurately on new, unseen examples.



#### Recap: datasets for learning

- Representative of the underlying model.
- Split the data in three independent data sets:
  - training set;
  - validation set;
  - test set.



### Recap: Cross-Validation

- C-V techniques are used for assessing how the results of a statistical analysis will generalize to an independent data set.
- Exhaustive Cross-Validation
  - leave one out cross validation (LOOCV)
  - leave p-out cross validation
- Non-exhaustive Cross-Validation
  - k-fold cross validation
  - repeated random sub-sampling validation
- Choose also according to your model/task.



#### A two step process: model construction

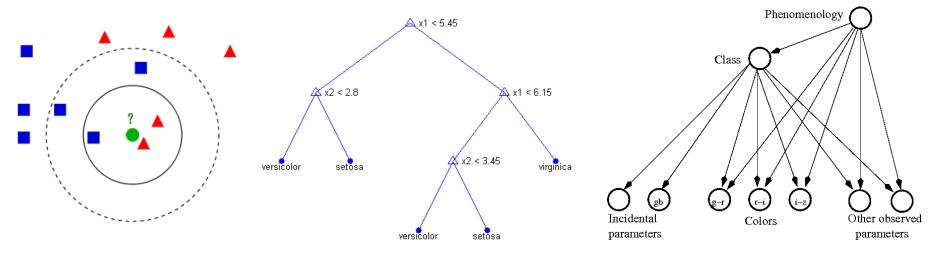
#### Model construction:

- each sample is assumed to belong to a predefined class, according to its label;
- use training and validation set for learning;
- model represented as classification rules, decision trees, or mathematical formulae.



### A two step process: model usage

- Model usage: classifying future or unknown objects
  - estimate accuracy;
    - use an independent test set;
    - eg, accuracy rate: percentage of test samples that are correctly classified;
    - if the accuracy is acceptable, use the model to classify data whose labels are not known.
  - Output: crispy or probabilistic.



# Crispy vs Probabilistic

#### Crispy classification

given an input, the classifier returns its label

#### Probabilistic classification

- given an input, the classifier returns its probabilities to belong to each class;
- useful when some mistakes can be more costly than others;
- allow thresholds (e.g., give me only data >90%)
- winner take all and other rules
  - assign the object to the class with the highest probability (WTA)
  - ...but only if its probability is greater than 40% (WTA with thresholds)

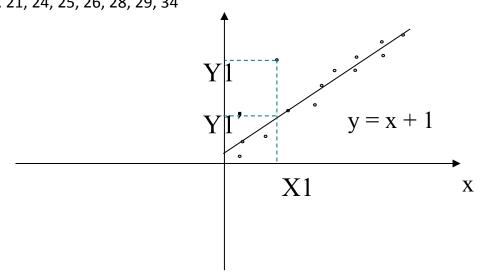
#### Classifiers evaluation

- Accuracy
  - ability of correctly predicti class labels.
- Speed
  - training time, classification time.
- Scalability
  - classifying data sets with millions of examples and hundreds of attributes with reasonable speed.
- Robustness
  - ability of handling missing data, noise, etc.
- Interpretability



### Preparing the data

- Pre-processing steps.
- Data cleaning
  - remove or reduce noise;
  - treatment of missing values.
  - □ Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
  - \* Partition into equal-frequency (equi-depth) bins:
    - Bin 1: 4, 8, 9, 15
    - Bin 2: 21, 21, 24, 25
    - Bin 3: 26, 28, 29, 34
  - \* Smoothing by bin means:
    - Bin 1: 9, 9, 9, 9
    - Bin 2: 23, 23, 23, 23
    - Bin 3: 29, 29, 29, 29
  - \* Smoothing by bin boundaries:
    - Bin 1: 4, 4, 4, 15
    - Bin 2: 21, 21, 25, 25
    - Bin 3: 26, 26, 26, 34

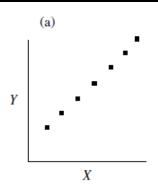


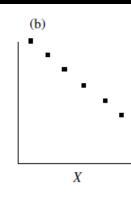
#### Preparing the data

- Relevance analysis
  - remove redundant and irrelevant attributes;
  - correlation analysis can be used to examine whether two variables changes together in a consistent manner.

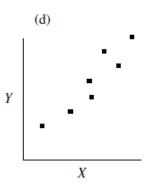
# Preparing the data

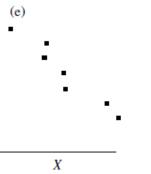
- Relevance analysis
  - remove redundant and irrelevant attributes;
  - correlation analysis can be used to examine whether two variables changes together in a consistent manner.
    - Pearson coefficient for linear correlation;
  - feature selection.













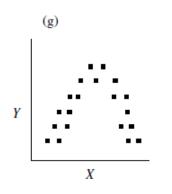


Image credits: cnfolio

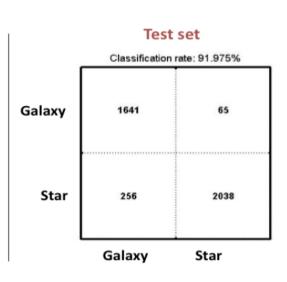
- a) perfect positive linear correlation
- b) perfect negative linear correlation
- c) not correlated
- d) positive linear correlation
- e) negative linear correlation
- f) not correlated
- g) non-linear correlation

### Accuracy Measures - 1

- Classification Rate M: the overall percentage of objects correctly classified.
- Error rate (misclassification rate, loss): 1-M

In the confusion matrix the network prediction Y are compared with the target T: the rows represent the true classes and the columns the predicted classes.



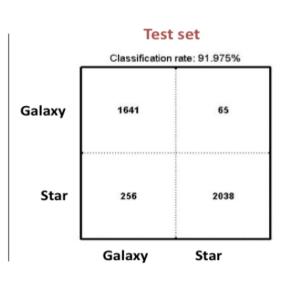


### Accuracy Measures - 1

- Classification Rate M: the overall percentage of objects correctly classified.
- Error rate (misclassification rate, loss): 1-M

In the confusion matrix the network prediction Y are compared with the target T: the rows represent the true classes and the columns the predicted classes.





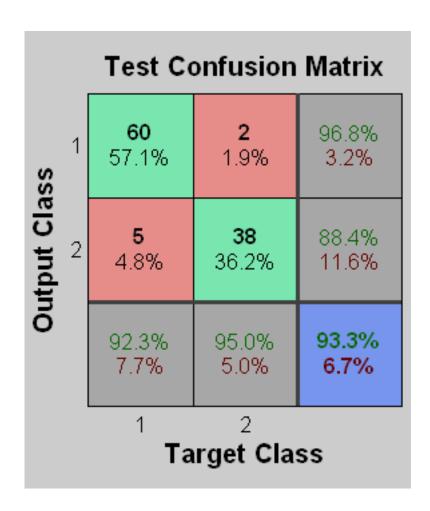
#### Confusion Matrix: example

- Confusion matrices for training, testing, and validation, and the three kinds of data combined.
- Model outputs: accurate
  - high numbers of correct responses in the green squares
  - low numbers of incorrect responses in the red squares.
  - the lower right blue squares illustrate the overall accuracies.



#### Completeness and Contamination

- Completeness: the percentage of objects of a given class correctly classified as such. (ex, class 1: 96.8% compl.);
- Contamination: for each class, the percentage of objects of other classes incorrectly classified as objects belonging to that class (ex, class 1: 7.7% cont.)
- Precision: 1-Contamination



# **Confusion Matrix**

|       | SNIa | SNIb | SNIc | SNIIn | SNIIp |
|-------|------|------|------|-------|-------|
| SNIa  | 845  | 2    | 1    | 8     | 23    |
| SNIb  | 31   | 18   | 2    | 1     | 3     |
| SNIc  | 16   | 1    | 15   | 5     | 8     |
| SNIIn | 12   | 0    | 1    | 64    | 9     |
| SNIIp | 34   | 3    | 3    | 7     | 235   |

#### Binary Classifiers

Two classes problem: negative vs. positive (e.g., cancer)

| $\downarrow$ actual $\setminus$ predicted $\rightarrow$ | negative | positive |
|---------------------------------------------------------|----------|----------|
| negative                                                | TN       | FP       |
| positive                                                | FN       | TP       |

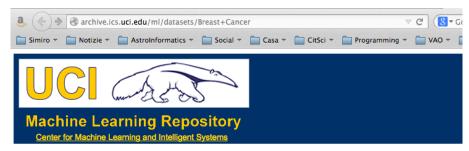
- Is an accuracy rate of 90% acceptable?
  - accuracy rate defined as the percentage of objects correctly classified.

#### Example: cancer diagnosis

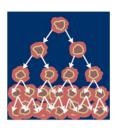
Is an accuracy rate of 90% acceptable?

 NOT NECESSARILY! Supposing only 3-4% of training set is labeled as cancer, a classifier that classify all the elements as "not cancer" would have 96% classification rate!

- The cost associated with a false negative may be far greater than that of a false positives.
  - eg, incorrectly classifying a cancerous patient as not cancerous.



## Breast Cancer Data Set Download: Data Folder, Data Set Description Abstract: Breast Cancer Data (Restricted Access)



| Data Set Characteristics:  | Multivariate   | Number of Instances:  | 286 | Area:               | Life       |
|----------------------------|----------------|-----------------------|-----|---------------------|------------|
| Attribute Characteristics: | Categorical    | Number of Attributes: | 9   | Date Donated        | 1988-07-11 |
| Associated Tasks:          | Classification | Missing Values?       | Yes | Number of Web Hits: | 117727     |

#### Example: cancer diagnosis

- Measures useful to assess costs and benefits associated with a classification model.
- Sensitivity=true\_positives/total\_#\_of\_positives
- **Specificity=**true\_negatives/total\_#\_of\_negatives
- Precision= t\_pos / (t\_pos + f\_pos)
  - e.g., percentage of samples labeled as cancer that are actually cancer.

| $\downarrow$ actual $\setminus$ predicted $\rightarrow$ | negative | positive |
|---------------------------------------------------------|----------|----------|
| negative                                                | TN       | FP       |
| positive                                                | FN       | TP       |

Sensitivity: TP / (FN+TP) // Type II error Specificity: TN / (TN+FP) // Type I error

Precision: TP / (TP+FP)

Accuracy: (TN+TP) / (TN+FP+FN+TP)

#### Classification Challenges

- Massive multiparametric dataset
  - Petascale ready
  - Sparse Data
  - Heterogeneous Data
- Classification
  - Real Time
  - Reliable
  - High completeness
  - Low contamination
  - Use minimum amount of points
  - Learn from the past experience
  - As automated as possible
- Include External Knowledge

