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Dust re-emits in the FIR
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get this model @ http://www.ias.u-psud fr/irgalaxies/model.php#Counts
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Comovmg IR Energy Density
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250um: flux density vs. redshift
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SPIRE 250 pm
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CIB in redshift slices
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CIB in redshift slices
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After “Observing” imulation

* Monte Carlo Simulation of “observed” maps

Error Estimate
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o Strength of 1-halo clustering term
a strong function of the masking
level

e Fitting an HOD to the CIB spectra
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