
Implications of Galaxy 
Clustering on the CMB
Marco Viero - Caltech



2

Blue
Star-Forming
Galaxy

Red 
Quiescent
Galaxy

Brief History of Clustering



2

More Strongly Clustered:
•more luminous
•redder

Brief History of Clustering



3

θ (arcsec)

w
(θ

) (
ar

cs
ec

) slope~-0.8

larger scales

stronger
clustering

Brief History of Clustering



4

Coil (2008)DEEP2

Brief History of Clustering



5

SDSS

Zehavi (2003)

Brief History of Clustering



6

Quadri (2008)

UKIDDS
DRGs

Brief History of Clustering



7

Zheng (2007)

SDSS

Two-halo:

One-halo:

Halo Model
see e.g., 

Cooray & Sheth (2000), 
Zehavi et al. (2005, 2008)

Brief History of Clustering



7

Two-halo:

One-halo:

Halo Model
see e.g., 

Cooray & Sheth (2000), 
Zehavi et al. (2005, 2008)

Brief History of Clustering
Zehavi (2011)
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Motivation
• l > 2000 dominated by secondary anisotropies
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Motivation (i)
9

SPT

Reichardt et al. 2011

Shape of the Galaxy Spectrum at 
3000 < l < 4500 highly dependent 

on the the way star-forming 
galaxies occupy massive halos

2-halo (linear)

1-halo 
(non-linear)
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• Halo Occupation Distribution (HOD):
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Motivation (ii)

• Halo Occupation Distribution (HOD):
• How many satellites per given halo mass? 
• Luminosity-Mass relation?

• This is imprinted on the 1-halo term of the CIB power spectrum!
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ACT 150 GHz
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Optical/UV Starlight absorbed by dust

Dust re-emits in the FIR

UV from young, hot stars

Stellar bump from old stars



Extragalactic Background
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Dole et al. (2006)

approx. 
brightness
nW m-2 sr-1

• Half the light 
emitted by stars 
is absorbed and 
re-emitted in the 
IR



Redshift Distribution of Sources
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Béthermin et al. (2011) 
arXiv:1010.1150 

get this model @ http://www.ias.u-psud.fr/irgalaxies/model.php#Counts

http://www.ias.u-psud.fr/irgalaxies/model.php#Counts
http://www.ias.u-psud.fr/irgalaxies/model.php#Counts
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Deconstructing the CIB
15

ULIRGS (LFIR > 1012Lsun)

LIRGS+ULIRGS
Total

L < 1011 Lsun

Le Floc’h et al.  (2005) 

Most of that Star 
Formation occurs 
in LIRGS, i.e.:
LFIR=1011-1012 Msun

Comoving IR Energy Density
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Typical LIRGS at z~1-3 
have flux densities 
S250 ~ 1-10 mJy 

20 mJy

SPIRE can resolve at 
best sources with 
S250 >~ 20 mJy 
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SPIRE
~18, 25, 36” FWHM 
@ 250, 350, 500 μm
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2.5 ‘

             SPIRE 250 μm

S>20mJy 
(at best 15% of all 

flux, i.e., 0.5% of all 
sources ) is resolved
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z=0.75

z=1.8
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Confusion

20

Recovering “Sources” in Simulations2 deg2 36 arcsec
beam

70% of top 
0.5%

recovered
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Resolved Source Clustering

• Marginal Signal at 
250 um
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Resolved Source Clustering

• Marginal Signal at 
250 um

• Consistent with 
zero at 500 um
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Confusion
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S > 20 mJy : 1,200/deg2 S < 20 mJy : 480,000/deg2
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Contribution to Power

• Bulk of CIB power from 
~10 mJy sources 

• Masking has much less 
impact at longer λ

24

Poisson
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Contribution to Power

• Bulk of CIB power from 
~10 mJy sources 

• Masking has much less 
impact at longer λ
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Vertical lines are 5-σ 
confusion noise limits

Poisson

Clustered



Submillimeter light

• redshifted dust 
SED (T~35) 
peaks at 
λ~200-800μm
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Negative K-Correction

• Longer wavelengths more sensitive to 
higher redshifts
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• Longer wavelengths more sensitive to 
higher redshifts
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Béthermin et al. (2011) 
arXiv:1010.1150 

CIB in redshift slices

Redshift Distribution of CIB
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250
350500

Infrared Background 
at submm wavelengths

probes z ~ 0.3 to 2

Béthermin et al. (2011) 
arXiv:1010.1150 

CIB in redshift slices

Redshift Distribution of CIB



The Team

Plus engineers, instrument 
builders, software developers etc.

Marco Viero,
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Data
30



Data

• SPIRE maps at 1200, 857, and 600 GHz
• Maps made with HeRMES SMAP pipeline
• 5 fields totaling ~ 70 deg2

• Modes >~ 0.5 deg filtered
• Sources > 50, 100, 200, 300 mJy masked

30

SMAP Team
Alex Conley

Louis Levenson
Gaelen Marsden

Marco Viero
Mike Zemcov

XMM-LSS

CDFS-SWIRE

BOOTES

ELAIS-S1

LOCKMAN-SWIRE



calibration
• SMAP maps of Neptune 
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250 μm
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calibration
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250 μm350 μm500 μm

• SPIRE passbands
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250 μm350 μm500 μm

calibration
33

• SPIRE passbands



effective beam area
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• Spectral weight different for Neptune and CIB
• Beam corrections = 0.99, 0.98, 0.95 at 250, 350, and 500 μm

250 μm350 μm500 μm



Transfer Function
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Preliminary



Error Estimate
• Monte Carlo Simulation of “observed” maps
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After “Observing” Simulation



Correlation Matrix

• Poisson error arising from non-Gaussian part of the 
four-point function correlates bins on small scales
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Field-to-Field Variation
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Gas as dust tracer
39

HI

• In regions of diffuse 
cirrus, dust traces gas

• Typical dust SED peaks 
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Gas as dust tracer
39

HI100 um250 μm (smoothed)

• In regions of diffuse 
cirrus, dust traces gas

• Typical dust SED peaks 
at ~ 170 μm



Estimating Cirrus Spectra

• IRAS maps probe large scales very well (unlike SPIRE)
• Cirrus has slope ~ -3.0, but varies field-to-field
• Clustered Galaxy Contribution(?)
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Estimating Cirrus Spectra
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Estimating Cirrus Spectra
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CIB Power Spectra
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CIB Power Spectra
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Combined 5 fields 
over 70 deg2 
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1-halo power vs. Masking
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Clustering Spectra
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Cross-correlations

• Neighboring bands 
more correlated

• Smaller scales 
(probing higher z) 
reduced correlations

• Faint background 
less correlated
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Combined 5 fields 
over 70 deg2 

Preliminary
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HeLMS
48

1200 GHz

~1.2°



HeLMS
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20

1200 GHz

~1.2°



Redshift distribution of CIB

• dS/dz the redshift 
distribution of 
background light

• Models do not 
agree on dS/dz 
for z > 1
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CIB as foreground
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Foreground Spectra

• z > 2 population 
sub-dominant 
contribution to 
total power
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Herschel Redshift Survey (HeRS)

• HETDEX LAEs from      
1.8 < z < 3.5

• Biased tracer of the 
dark matter, bias 
known to 1-2%

LAEs

z>1.8foreground
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HeRS

100 μm map (Galactic cirrus)
PI: Viero

Herschel Redshift Survey (HeRS)
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100 μm map (Galactic cirrus)
PI: Viero

Herschel Redshift Survey (HeRS)



HeRS AORs

• 250, 350, 500 μm with SPIRE 

• 35 hours for 70 deg2  (Priority 1)

• Fast (60”/s) scans with 90° cross-linking

55

PI: Viero
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Herschel Redshift Survey (HeRS)
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Herschel Redshift Survey (HeRS)



HeLMS/HeRS ancillary data
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Stripe 82 SDSS imaging (ugriz, i<22.75, 270 deg2)

CFHT Stripe 82 survey (170 deg2, i<23.5, seeing<0.8")

and VISTA J and K (this proposal)

UKIDDS LAS, Kvega=18.4

UKIDSS: DXS Field 4

CFHTLS W4

Imaging :

BOSS (220 deg2, 40,000 redshifts)

DEEP2 and PRIMUS

VVDS

Wiggle�z

Spectroscopy :

Radio :
VLA

Level 6.5 ACT

Today

Tomorrow

•SDSS optical
•ACT (150 deg2)
•CFHT
•UKIDDS
•VLA
•Wiggle-z
•BOSS

•ALMA
•ACTpol
•Spitzer Warm
•HETDEX
•Visible from 
most sites
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• Measure clustering in the Power 
Spectrum because at best only 
15% of flux is “resolved”
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conclusions

• Measure clustering in the Power 
Spectrum because at best only 
15% of flux is “resolved”

• Strength of 1-halo clustering term 
a strong function of the masking 
level

• Fitting an HOD to the CIB spectra 
should provide insight on how 
DSFGs occupy dark matter halos
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