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get this model @ http://www.ias.u-psud fr/irgalaxies/model.php#Counts
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CIB in redshift slices
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CIB in redshift slices
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500 um 350 um 250 um
43 detectors 88 detectors 139

45 mm
(13°)
020%0%%

O = Overlapping beams

SPIRE-like
spider-web bolometer
detector arrays...

BLAST
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SPIRE-like
spider-web bolometer
detector arrays...

... but a 1.8 m primary
resulting in beams:

36” - 250 pm
45”7 - 350 pym
60” - 500 pm

l.e., twice the size of SPIRE’s
beams
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BLAST 2006

10 deg® map in
GOODS-South

i ~180/260 hours (70%)
' spent observing
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— smaller scales —>

BLAST

Viero et al. (2009)
arXiv: 0904.1200

Power Spectrum
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halo model: Mattia Negrello
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Multipole ¢

Planck Collaboration et al. (2011): arXiv: 1101.2028

Planck Power Spectrum
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CIB in redshift slices
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CIB in redshift slices
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ACT Southern Field
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o Strength of 1-halo clustering term
a strong function of the masking
level
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