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Dust re-emits in the FIR

Optical/UV Starlight absorbed by dust /
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Extragalactic Background Light (EBL)
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Redshift Distribution
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Star Formation History
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250um: flux density vs. redshift
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Measure the spatial distribution
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1. Provides link to
descendants/progenitors



Goal:

Measure the spatial distribution
(clustering) of galaxies responsible for
most of the SF in the Universes History

1. Provides link to
descendants/progenitors

2. Informs galaxy formation
models
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ZENITH - TRANSMISSION OF THE ATMOSPHERE
IN DEPENDENCE OF THE PRECIPITABLE WATER VAPOR
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500 um 350 um 250 um
43 detectors 88 detectors 139

23 mm
(6.5%)

O = Overlapping beams

SPIRE-like
spider-web bolometer
detector arrays...



SPIRE-like
spider-web bolometer
detector arrays...

... but a 1.8 m primary

resulting in beams:
36" - 50 um
45” - 350 um
60” - 500 um

i.e., twice the size of SPIRE’S
beams
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BLAST GOODS-south

—Noise BGS-wide:
36 mdy beam-1

21 mdy beam-1
\20 mdJy beam-
Noise BGS-deep:

11 mdy beam-!
9 mJdy beam-!
6 mJy beam-!



Dec. Tanplane Offset [deq]

BLAST GOODS-south

o

n Catiroe
L30T )

R.A. Tanplane Offset [deg]

—~Noise BGS-wide:
36 mdy beam-1
21 mdy beam-1
20 mdy beam-1

Noise BGS-deep:
11 mdy beam-!

9 mJdy beam-!

6 mJy beam-!



RMS limit [L_,,]

—i
o

—d
o

10

—i
w

—_l
N

11

SCUBA 450 um

® SPIRE 500 um SCUBA-2 SASSy
X BLAST 500 um SPTIV%de
SCUBA 850 um
LABOCA 870 um SPT 2008
AzTEC 1.1 mm SPT Deep_]
[0 SPT 1.4 mm L]
BLAST

H-ATLAS
Scott 02 Austermann 09 .
Perera G®ppin OQLAST
X HerMES L6
scalfaigs 10
HerMES L5
HerMES L3+L4
SCUBA-2 CLS
HerMES L2 ‘
Hughes 98 ‘
GOODS Super Deep
SCUBA-2 CLS 450 um

10 10° 10
2
survey area [deg']

10



1 0'8 | | |
A
® SPIRE 500 um
1 0-9 | ® BLAST 500 um _
SCUBA 850 um HATLAS
- LABOCA 870 um Blap
-
_IE,’, 1 0'10 _ BOLOCAM 1.1 mm B 080
AZTEC 1.1 mm Hegldes 18
~~—~
N@ MAMBO 1.2 mm be.l"l-er SPT §0° S“ESPT DSGY/BA-2 CLS 450 um
O 1 0'11 — [ SPT 1.4 mm HG%ES B —
E. BLAST
E 107} T el
1 Au,rWSelsaﬂ)
B Coppin 06 Scptt10
9_) 1 O B Scott 02 Grevel2dént05 _ Perera 08 B
©
1 0'14 . Hughes 98 _
-15
1 O 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

1995 2000 2005 2010 2015
year



........ <17 1 Spitzer (Frayer 2009)
cum o ATH_] Herschel (Nguyen

o T AR - --.12010)

CSO

] CCAT

10.00

[mly]

a

0.10

0.01
1oL

0.8

0.6

0.4

Resolved CIB fraction

0.2

-

0.0 R R JRRREE R L P LR RRERT TR PRP PP L:'!"j';'; .....
10 100 250 500 1000
Bethermin et al. (2011) 4 [¢m] 350
arXiv:1010.1150

Confusion



-band

~ 60 sources/
arcmine=

Confusion



U-band
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How do you measure
clustering when most of
what you see are
fluctuations?
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BLAST Power Spectrum
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BLAST Power Spectrum
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Planck Power Law
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Frequency-dependence of Power-law
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P(k)=b*Pom(k,z)

Linear Bias
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see e.g., Cooray & Sheth (2000),
Zehavi et al. (2005, 2008)

BLAST Halo Model
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Zehavi et al. (2005, 2008)

e Clustering Signal made
up of two regimes
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What are you
actually fitting?

Pk, z) = / Nhaio(M, Z)[2Nccn(M)Nsat(M)uDM(ks z|M)
M

+ Ny (M)upy(k, z|M)|dM [noy (2),

Py (k, z) = Ppm(k, z)|:/M Nhao(M, 2)Nga(M, z)

2
x b(M, 2Jupm(k, le)dM] / n2.(2).

Ngal(z) = /M Nhalo(M, Z)|:1 + (%) :|dM

and for each Mmin-& pair, M+ fixed to agree to
source model by requiring:

* dN
f (5.2 dS = nga(@® AVi@
0



What are you
actually fitting?

B f ato (M, 2)[2Neen(M) Neae Mupna(k, 2| M)
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2
x b(M, 2)upm(k, le)dM] / n2,(2).
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Halo Model of Mattia Negrello &
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Sub-millimetre galaxies reside in dark matter halos with
masses greater than 3 x 10" M.,

A.I- Z ~ 2 A.Amblard', A. Cooray'*,P. Serra', B. Altieri*, V. Arumugam®, H. Aussel®, A. Blain®, J. Bock*",
A.Boselli’, V.Buat”, N. Castro-Rodriguez®?, A. Cava®?, P. Chanial'’, E. Chapin'' ,D.L. Clements'’,
A.Conley'?, L. Conversi®, C.D. Dowell*® E.Dwek'?, S. Eales'*, D.Elbaz®, D. Farrah'®, A. Franceschini
.b[inear = 4.0 W. Gear'?, J. Glenn'?, M. Griffin'?*, M. Halpern'!, E. Hatziminaoglou'", E. Ibar'®, K. Isaak'?,
R.J.Ivison'®* A.A.Khostovan', G. Lagache', L. Levenson®*“ N.Lu*%",S.Madden®, B. Maffei®!,
N 12 M G.Mainetti'®, L. Marchetti'®, G. Marsden'!, K. Mitchell-Wynne!, H.T. Nguyen®?, B. O'Halloran'’,
sun S.J. Oliver'®, A. Omont*?, M.J. Page®*, P. Panuzzo®, A. Papageorgiou'?, C P. Pearson®*! 1. Pérez-
Fournon®™?, M. Pohlen', N. Rangwala'?, I.G. Roseboom'”, M. Rowan-Robinson'”, M. Sdnchez

Using the halo model fits, we estimate the mininum dark matter mass scale for dusty star-
forming galaxies at the peak of the star formation history of the universe to be log,, Myin/Ms =
11.5%)7 at 350 um with a bias factor for the galaxies of 2.4*}9. The minimum halo masses
log o Mimin /M at 250 and 500 gmare 11.175 ¢ and 11.87) 3, respectively. The corresponding bias
factors for the galaxies are 2.0%07 and 2.8'02 at 250 and 500 pm, respectively. The differences
in the minimum halo masses and the bias factors between the three wavelengths are likely due
a combination of effects including overall calibration uncertainties, the fact that at longer wave-

arXiv: 0904.1200

Confirmed
by Herschel!
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1 ® Use B10 model
‘ for Poisson term

W(l+1)C, / 2n [Jy®/sr]
W(l+1)C, / 2n [Jy®/sr]
o

" "- A/.

l()o . — (,

200 500 1000 2000 200 500 1000 2000

l l

R o

asd o

~>‘ ] ~>~. 1010

— —

= =

N N

N 1S

QO | &

- | = Y S

é a a I U (e /‘. a é 109 s a FRC R . s

= 200 500 1000 2000 200 500 1000 2000
l l

Planck Collaboration et al. (2011)
arXiv: 1101.2028



o
& e nY
Q 353 GHz
st 045 GHz ' .
857 GHz /
=
N 109_ : -
N ]
G o
iy
+
=
200 400 600 1000 2000

Planck Collaboration et al. (2011)

arXiv: 1101.2028

. F|X M1/Mmin=1 O

® Use B10 model
for Poisson term



M |

v v'

“
10°E1 5 HerMES GOODS-N
+ BLAST ref. 17

o HerMES Lockman-SWIRE

1 LA

;I
Q -
G +
T 8 i
= 10
S 1133
E i
a i po=" /
e ; L

10° y

) llll
N

0.01

Amblard et al. (2011)
arXiv: 1101.1080

E (b) 1//....'

i{i"?-% 3
R S A S . |

0.10 1.00

kK [arcmin’]

Herschel Halo Model



6'105 ......... ——rrrrrr—r— 77T T
! .

Lagache et al.
Valiante et al.
HerMES 250um -

HerMES 350um s
] | HerMES 500um +
4107 ‘ —
B
)
2.10°+ /|| " \ T -

o
3
.
w
F=N

Amblard et al. (2011)
arXiv: 1101.1080

Herschel Halo Model






-52°

-53°

-54°

-55°

05" 00” 04" 40"




CMB

-52°

-53°

-54°

-55°
05" 00” 04" 40"




CMB
Galaxies

05" 00" 04" 40"




CMB
Galaxies
SZ Clusters

05" 00" 04" 40"

The high-¢ CMB sky



1000

100

I(1+1)C,/2m (uK?)

218x218
148x218
148x148

- ( Total Signal

Multipole moment |

Dunkley et al. 1009.0866

10000

CMB Foregrounds



Primary CMB

1000

100

I(1+1)C,/2m (uK?)

- ( Total Signal

218x218 - - - - -
148x218 - ----—- -
148x148

Multipole moment |

Dunkley et al. 1009.0866

10000

CMB Foregrounds



( Total Signal

/Primary CMB
1000 %7 ) TN Total model __.+*J
e

100

= Secondary CMB:
o\ g ;/- Sunyaev-Zel'dovich

I(1+1)C,/2m (uK?)

- sources
' -7 \-
. 218x218 - - — - - (SZ)

148x218 - ------
148x148

10000

Multipole moment |

Dunkley et al. 1009.0866

CMB Foregrounds



( Total Signal

/Primary CMB
1000 = ¥ e i Total model 7
: Ly Galaxies:

.» Dusty

100

I(1+1)C,/2m (uK?)

Secondary CMB:
0F T Rggmcei/‘ Sunyaev-Zel'dovich

T a1 (SZ)

148x218 - ------
148x148

10000

Multipole moment |

Dunkley et al. 1009.0866

CMB Foregrounds



’#"’"( -

Primary CMB |
. / — ( Total Signal
1000 77 R i Total model ,_.+*H

Ii Y +‘ - ',‘w”"""’“{“

GGalaxies:

7: Radio

100

I(1+1)C,/2m (uK?)

Secondary CMB:
0F T Rggmcei/‘ Sunyaev-Zel'dovich

T a1 (SZ)

148x218 - ------
148x148

10000

Multipole moment |

Dunkley et al. 1009.0866

CMB Foregrounds



1000 g N

-
-
———
-

: Wi
i ST s i} ** i
i j \\Q? rot e
100 = IR sources - w. , T

Total model

pot

-
-t
I
» -
.-
—
e et

I(1+1)C,/2m (uK?)

-
""
-

"‘

-
.
’f

|

218x218
148x218
148x148

4""
-’
-

\
\
) Y '\
\
\' ‘.
‘l
]

_-~TRadio -

Galaxies:
Shot
Clustered

Multipole moment |

Dunkley et al. 1009.0866

10000

CMB Foregrounds



) o ’
S e

. w .

h

Bk | [

A S BNAKY

HAVERFC )F\f)

ME¢ O OWar=mZERE




ACT Southern Field

Hajian et al (2010)

® 300 deg®

® 1’ resolution

® 3 bands
48 GHz (2.0 mm)
218 GHz (T1.4 mm)
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mapmaker:
Transfer Function = 1
on relevant scales
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Fit a Linear bias simultaneously to each band
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o Auto-Frequency Correlations:

v' Measure Clustering of DSFGs

v Constrain physical properties of
Host Halos, such as bias and Mmin

® (Cross-Frequency Correlations:
v  Isolate Dusty Galaxies in CMB maps
v Identify the High-z Clustering Signal

v Constrain Phenomenological Galaxy
Models

Summary
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To Get Weak kSZ Signal, you need
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Measuring Epoch of Reionization
Herschel /SPIRE X SPT-Deep Field

4000 gq. deg.
2008 fields

2009 fields
2010 fields
2011 flelds .

SPT 100 deg” deep field is
the deepest mm map in
existence and will remain so
for the next decade.

Courtesy Joaquin Vieira Marco viero \%{/ 55
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Measuring Epoch of Reionization
Herschel /SPIRE X SPT-Deep Field

SPT 100 deg” deep field is
the deepest mm map |n
existence and w4

tor the next deq T} o I—IOTAC called
this proposal a
"Must-Do"

Given 79 hous to
map a 100 deg= with
SPIRE
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