[1] Garcia, K., Quartin, M., Siffert, B. B., On the amount of peculiar velocity field information in supernovae from LSST and beyond, Physics of the Dark Universe, 29, 100519 (2020) [2] Mroz, P., Identifying microlensing events using neural networks, arXiv e-prints, arXiv:2008.11930 (2020) [3] Boian, I., Groh, J. H., Progenitors of early-time interacting supernovae, Monthly Notices of the Royal Astronomical Society, 496, 1325 (2020) [4] Almualla, M., Coughlin, M. W., et al., Dynamic scheduling: target of opportunity observations of gravitational wave events, Monthly Notices of the Royal Astronomical Society, 495, 4366 (2020) [5] Foxley-Marrable, M., Collett, T. E., et al., Observing the earliest moments of supernovae using strong gravitational lenses, Monthly Notices of the Royal Astronomical Society, 495, 4622 (2020) [6] Reyes, E., Estévez, P. A., Transformation Based Deep Anomaly Detection in Astronomical Images, arXiv e-prints, arXiv:2005.07779 (2020) [7] Wyatt, S. D., Tohuvavohu, A., et al., The Gravitational Wave Treasure Map: A Tool to Coordinate, Visualize, and Assess the Electromagnetic Follow-up of Gravitational-wave Events, The Astrophysical Journal, 894, 127 (2020) [8] Zenati, Y., Bobrick, A., Perets, H. B., Faint rapid red transients from neutron star-CO white dwarf mergers, Monthly Notices of the Royal Astronomical Society, 493, 3956 (2020) [9] Howitt, G., Stevenson, S., et al., Luminous Red Novae: population models and future prospects, Monthly Notices of the Royal Astronomical Society, 492, 3229 (2020) [10] Guetta, D., Rahin, R., et al., Constraining the fraction of core-collapse supernovae harbouring choked jets with high-energy neutrinos, Monthly Notices of the Royal Astronomical Society, 492, 843 (2020) [11] Tu, Z.-L., Yang, M., et al., Superflares on Solar-type Stars from the First Year Observation of TESS, The Astrophysical Journal, 890, 46 (2020) [12] Andronov, I. L., Kulynska, V. P., Computer modeling of irregularly spaced signals. Statistical properties of the wavelet approximation using a compact weight function, Annales Astronomiae Novae, 1, 167 (2020) [13] Salmon, L., Hanlon, L., et al., Web application for galaxy-targeted follow-up of electromagnetic counterparts to gravitational wave sources, Astronomy and Astrophysics, 634, A32 (2020) [14] Kim, A. G., Linder, E. V., Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity, Physical Review D, 101, 023516 (2020) [15] Bell, K. J., The search for planet and planetesimal transits of white dwarfs with the Zwicky Transient Facility, IAU Symposium, 357, 37 (2020) [16] Graziani, R., Rigault, M., et al., Peculiar velocity cosmology with type Ia supernovae, arXiv e-prints, arXiv:2001.09095 (2020) [17] Carbone, D., Corsi, A., An Optimized Radio Follow-up Strategy for Stripped-envelope Core-collapse Supernovae, The Astrophysical Journal, 889, 36 (2020) [18] Cen, R., On Post-starburst Galaxies Dominating Tidal Disruption Events, The Astrophysical Journal, 888, L14 (2020) [19] Danielski, C., Korol, V., et al., Circumbinary exoplanets and brown dwarfs with the Laser Interferometer Space Antenna, Astronomy and Astrophysics, 632, A113 (2019) [20] Greene, J. E., Strader, J., Ho, L. C., Intermediate-Mass Black Holes, arXiv e-prints, arXiv:1911.09678 (2019) [21] Piro, A. L., Inferring the Presence of Tides in Detached White Dwarf Binaries, The Astrophysical Journal, 885, L2 (2019) [22] Agrawal, A., Okumura, T., Futamase, T., Constraining neutrino mass and dark energy with peculiar velocities and lensing dispersions of Type Ia supernovae, Physical Review D, 100, 063534 (2019) [23] Hijikawa, K., Kinugawa, T., et al., The Rate of iPTF 14gqr like Ultra-stripped Supernovae and Binary Evolution Leading to Double Neutron Star Formation, The Astrophysical Journal, 882, 93 (2019) [24] Wojtak, R., Hjorth, J., Gall, C., Magnified or multiply imaged? - Search strategies for gravitationally lensed supernovae in wide-field surveys, Monthly Notices of the Royal Astronomical Society, 487, 3342 (2019) [25] Littenberg, T. B., Cornish, N. J., Prospects for Gravitational Wave Measurement of ZTF J1539+5027, The Astrophysical Journal, 881, L43 (2019) [26] Kremer, K., Lu, W., et al., Tidal Disruptions of Stars by Black Hole Remnants in Dense Star Clusters, The Astrophysical Journal, 881, 75 (2019) [27] Holder, J., VERITAS Collaboration, Lynch, R. S., VERITAS Observations of Fast Radio Bursts, 36th International Cosmic Ray Conference (ICRC2019), 36, 698 (2019) [28] Davenport, J. R. A., SETI in the Spatio-Temporal Survey Domain, arXiv e-prints, arXiv:1907.04443 (2019) [29] Hsieh, H. H., Bannister, M. T., et al., Maximizing LSST Solar System Science: Approaches, Software Tools, and Infrastructure Needs, arXiv e-prints, arXiv:1906.11346 (2019) [30] Stephan, A. P., Naoz, S., et al., The Fate of Binaries in the Galactic Center: The Mundane and the Exotic, The Astrophysical Journal, 878, 58 (2019) [31] D'Orazio, D. J., Loeb, A., Guillochon, J., Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies, Monthly Notices of the Royal Astronomical Society, 485, 4413 (2019) [32] Kim, A., Aldering, G., et al., Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys, Bulletin of the American Astronomical Society, 51, 140 (2019) [33] Eracleous, M., Gezari, S., et al., An Arena for Multi-Messenger Astrophysics: Inspiral and Tidal Disruption of White Dwarfs by Massive Black Holes, Bulletin of the American Astronomical Society, 51, 10 (2019) [34] Scolnic, D., Perlmutter, S., et al., The Next Generation of Cosmological Measurements with Type Ia Supernovae, Astro2020: Decadal Survey on Astronomy and Astrophysics, 2020, 270 (2019) [35] Smith, K. W., Williams, R. D., et al., Lasair: The Transient Alert Broker for LSST:UK, Research Notes of the American Astronomical Society, 3, 26 (2019) [36] Yalinewich, A., Guillochon, J., et al., Shock breakouts from tidal disruption events, Monthly Notices of the Royal Astronomical Society, 482, 2872 (2019)