[1] Hammerstein, E., Gezari, S., et al., TDE Hosts are Green and Centrally Concentrated: Signatures of a Post-Merger System, arXiv e-prints, arXiv:2010.10738 (2020) [2] Frederick, S., Gezari, S., et al., A Family Tree of Optical Transients from Narrow-Line Seyfert 1 Galaxies, arXiv e-prints, arXiv:2010.08554 (2020) [3] Burdge, K. B., Coughlin, M. W., et al., An 8.8 minute orbital period eclipsing detached double white dwarf binary, arXiv e-prints, arXiv:2010.03555 (2020) [4] Ho, A. Y. Q., Kulkarni, S. R., et al., SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart, The Astrophysical Journal, 902, 86 (2020) [5] Bulla, M., Miller, A. A., et al., ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations, The Astrophysical Journal, 902, 48 (2020) [6] Miller, A. A., Yao, Y., et al., ZTF Early Observations of Type Ia Supernovae. II. First Light, the Initial Rise, and Time to Reach Maximum Brightness, The Astrophysical Journal, 902, 47 (2020) [7] Soumagnac, M. T., Ganot, N., et al., SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility, The Astrophysical Journal, 902, 6 (2020) [8] Anand, S., Coughlin, M. W., et al., Optical follow-up of the neutron star-black hole mergers S200105ae and S200115j, Nature Astronomy, (2020) [9] Mukherjee, S., Ghosh, A., et al., First measurement of the Hubble parameter from bright binary black hole GW190521, arXiv e-prints, arXiv:2009.14199 (2020) [10] Coughlin, M. W., Burdge, K., et al., The ZTF Source Classification Project: II. Periodicity and variability processing metrics, arXiv e-prints, arXiv:2009.14071 (2020) [11] Burdge, K. B., Prince, T. A., et al., A systematic search of Zwicky Transient Facility data for ultracompact binary LISA-detectable gravitational-wave sources, arXiv e-prints, arXiv:2009.02567 (2020) [12] Perley, D. A., Fremling, C., et al., The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics, arXiv e-prints, arXiv:2009.01242 (2020) [13] Lunnan, R., Yan, L., et al., Four (Super)luminous Supernovae from the First Months of the ZTF Survey, The Astrophysical Journal, 901, 61 (2020) [14] Bruch, R. J., Gal-Yam, A., et al., A large fraction of hydrogen-rich supernova progenitors experience elevated mass loss shortly prior to explosion, arXiv e-prints, arXiv:2008.09986 (2020) [15] Förster, F., Cabrera-Vives, G., et al., The Automatic Learning for the Rapid Classification of Events (ALeRCE) Alert Broker, arXiv e-prints, arXiv:2008.03303 (2020) [16] Soumagnac, M. T., Ofek, E. O., et al., Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material, The Astrophysical Journal, 899, 51 (2020) [17] Andreoni, I., Kool, E. C., et al., Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-ray Burst Triggers, arXiv e-prints, arXiv:2008.00008 (2020) [18] Ofek, E. O., Soumagnac, M., et al., A catalog of over ten million variable source candidates in ZTF data release 1, arXiv e-prints, arXiv:2007.01537 (2020) [19] Miller, A. A., Magee, M. R., et al., The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq, The Astrophysical Journal, 898, 56 (2020) [20] Bolin, B. T., Lisse, C. M., et al., Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations, The Astronomical Journal, 160, 26 (2020) [21] Zhai, C., Ye, Q., et al., Synthetic Tracking Using ZTF Deep Drilling Data Sets, Publications of the Astronomical Society of the Pacific, 132, 064502 (2020) [22] Kasliwal, M. M., Anand, S., et al., Kilonova Luminosity Function Constraints based on Zwicky Transient Facility Searches for 13 Neutron Star Mergers, arXiv e-prints, arXiv:2006.11306 (2020) [23] Ho, A. Y. Q., Perley, D. A., et al., ZTF20aajnksq (AT2020blt): A Fast Optical Transient at $z \approx 2.9$ With No Detected Gamma-Ray Burst Counterpart, arXiv e-prints, arXiv:2006.10761 (2020) [24] Andreoni, I., Lu, W., et al., Zwicky Transient Facility Constraints on the Optical Emission from the Nearby Repeating FRB 180916.J0158+65, The Astrophysical Journal, 896, L2 (2020) [25] Stein, R., van Velzen, S., et al., A high-energy neutrino coincident with a tidal disruption event, arXiv e-prints, arXiv:2005.05340 (2020) [26] Ho, A. Y. Q., Perley, D. A., et al., The Koala: A Fast Blue Optical Transient with Luminous Radio Emission from a Starburst Dwarf Galaxy at z = 0.27, The Astrophysical Journal, 895, 49 (2020) [27] Fremling, C., Miller, A. A., et al., The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs, The Astrophysical Journal, 895, 32 (2020) [28] Szkody, P., Dicenzo, B., et al., Cataclysmic Variables in the First Year of the Zwicky Transient Facility, The Astronomical Journal, 159, 198 (2020) [29] De, K., Kasliwal, M. M., et al., The Zwicky Transient Facility Census of the Local Universe I: Systematic search for Calcium rich gap transients reveal three related spectroscopic sub-classes, arXiv e-prints, arXiv:2004.09029 (2020) [30] Ho, A. Y. Q., Corsi, A., et al., The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw): An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission, The Astrophysical Journal, 893, 132 (2020) [31] Dekany, R., Smith, R. M., et al., The Zwicky Transient Facility: Observing System, Publications of the Astronomical Society of the Pacific, 132, 038001 (2020) [32] Coughlin, M. W., Burdge, K., et al., ZTF J1901+5309: a 40.6-min orbital period eclipsing double white dwarf system, Monthly Notices of the Royal Astronomical Society, 494, L91 (2020) [33] Kupfer, T., Bauer, E. B., et al., The First Ultracompact Roche Lobe-Filling Hot Subdwarf Binary, The Astrophysical Journal, 891, 45 (2020) [34] Ye, Q., Kelley, M. S. P., et al., Pre-discovery Activity of New Interstellar Comet 2I/Borisov beyond 5 au, The Astronomical Journal, 159, 77 (2020) [35] Ye, Q., Masci, F. J., et al., A Twilight Search for Atiras, Vatiras, and Co-orbital Asteroids: Preliminary Results, The Astronomical Journal, 159, 70 (2020) [36] Mróz, P., Street, R. A., et al., Gravitational Microlensing Events from the First Year of the Northern Galactic Plane Survey by the Zwicky Transient Facility, Research Notes of the American Astronomical Society, 4, 13 (2020) [37] van Velzen, S., Gezari, S., et al., Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations: Entering a New Era of Population Studies, arXiv e-prints, arXiv:2001.01409 (2020) [38] Ho, A. Y. Q., Goldstein, D. A., et al., Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient, The Astrophysical Journal, 887, 169 (2019) [39] Yao, Y., Miller, A. A., et al., ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample, The Astrophysical Journal, 886, 152 (2019) [40] Duev, D. A., Mahabal, A., et al., Real-bogus classification for the Zwicky Transient Facility using deep learning, Monthly Notices of the Royal Astronomical Society, 489, 3582 (2019) [41] Kelley, M. S. P., Bodewits, D., et al., Comet 240P/NEAT Is Stirring, The Astrophysical Journal, 886, L16 (2019) [42] Burdge, K. B., Fuller, J., et al., Orbital Decay in a 20 Minute Orbital Period Detached Binary with a Hydrogen-poor Low-mass White Dwarf, The Astrophysical Journal, 886, L12 (2019) [43] McBrien, O. R., Smartt, S. J., et al., SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf, The Astrophysical Journal, 885, L23 (2019) [44] Coughlin, M. W., Ahumada, T., et al., GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR, The Astrophysical Journal, 885, L19 (2019) [45] Nordin, J., Brinnel, V., et al., Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves, Astronomy and Astrophysics, 631, A147 (2019) [46] Karamehmetoglu, E., Fransson, C., et al., The luminous and rapidly evolving SN 2018bcc: Clues toward the origin of Type Ibn SNe from the Zwicky Transient Facility, arXiv e-prints, arXiv:1910.06016 (2019) [47] van Roestel, J., Bellm, E. C., et al., Simultaneous Observations of the Northern TESS Sectors by the Zwicky Transient Facility, Research Notes of the American Astronomical Society, 3, 136 (2019) [48] Frederick, S., Gezari, S., et al., A New Class of Changing-look LINERs, The Astrophysical Journal, 883, 31 (2019) [49] Jencson, J. E., Adams, S. M., et al., Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor, The Astrophysical Journal, 880, L20 (2019) [50] Ye, Q., Masci, F. J., et al., Toward Efficient Detection of Small Near-Earth Asteroids Using the Zwicky Transient Facility (ZTF), Publications of the Astronomical Society of the Pacific, 131, 078002 (2019) [51] Graham, M. J., Kulkarni, S. R., et al., The Zwicky Transient Facility: Science Objectives, Publications of the Astronomical Society of the Pacific, 131, 078001 (2019) [52] Burdge, K. B., Coughlin, M. W., et al., General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system, Nature, 571, 528 (2019) [53] Duev, D. A., Mahabal, A., et al., DeepStreaks: identifying fast-moving objects in the Zwicky Transient Facility data with deep learning, Monthly Notices of the Royal Astronomical Society, 486, 4158 (2019) [54] Hung, T., Cenko, S. B., et al., Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event, The Astrophysical Journal, 879, 119 (2019) [55] Bellm, E. C., Kulkarni, S. R., et al., The Zwicky Transient Facility: Surveys and Scheduler, Publications of the Astronomical Society of the Pacific, 131, 068003 (2019) [56] Kupfer, T., Bauer, E. B., et al., A New Class of Large-amplitude Radial-mode Hot Subdwarf Pulsators, The Astrophysical Journal, 878, L35 (2019) [57] Fremling, C., Ko, H., et al., ZTF18aalrxas: A Type IIb Supernova from a Very Extended Low-mass Progenitor, The Astrophysical Journal, 878, L5 (2019) [58] Ngeow, C.-C., Lee, C.-D., et al., Introducing the Zwicky Transient Facility and the Be star variability program: a progress report at the National Central University, Journal of Physics Conference Series, 1231, 012010 (2019) [59] Coughlin, M. W., Ahumada, T., et al., 2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility, Publications of the Astronomical Society of the Pacific, 131, 048001 (2019) [60] Ye, Q., Kelley, M. S. P., et al., Multiple Outbursts of Asteroid (6478) Gault, The Astrophysical Journal, 874, L16 (2019) [61] Mahabal, A., Rebbapragada, U., et al., Machine Learning for the Zwicky Transient Facility, Publications of the Astronomical Society of the Pacific, 131, 038002 (2019) [62] Perley, D. A., Mazzali, P. A., et al., The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole?, Monthly Notices of the Royal Astronomical Society, 484, 1031 (2019) [63] Papadogiannakis, S., Goobar, A., et al., R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory, Monthly Notices of the Royal Astronomical Society, 483, 5045 (2019) [64] MacLeod, C. L., Green, P. J., et al., Changing-look Quasar Candidates: First Results from Follow-up Spectroscopy of Highly Optically Variable Quasars, The Astrophysical Journal, 874, 8 (2019) [65] De, K., Kasliwal, M. M., et al., ZTF 18aaqeasu (SN2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar-mass White Dwarf, The Astrophysical Journal, 873, L18 (2019) [66] van Velzen, S., Gezari, S., et al., The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization, The Astrophysical Journal, 872, 198 (2019) [67] Masci, F. J., Laher, R. R., et al., The Zwicky Transient Facility: Data Processing, Products, and Archive, Publications of the Astronomical Society of the Pacific, 131, 018003 (2019) [68] Bellm, E. C., Kulkarni, S. R., et al., The Zwicky Transient Facility: System Overview, Performance, and First Results, Publications of the Astronomical Society of the Pacific, 131, 018002 (2019) [69] Patterson, M. T., Bellm, E. C., et al., The Zwicky Transient Facility Alert Distribution System, Publications of the Astronomical Society of the Pacific, 131, 018001 (2019) [70] Ho, A. Y. Q., Phinney, E. S., et al., AT2018cow: A Luminous Millimeter Transient, The Astrophysical Journal, 871, 73 (2019) [71] Laher, R. R., Masci, F. J., et al., Processing Images from the Zwicky Transient Facility, Robotic Telescope, Student Research and Education Proceedings, 1, 329 (2018) [72] Soraisam, M. D., Gilfanov, M., et al., Multiwavelength approach to classifying transient events in the direction of M 31, Astronomy and Astrophysics, 615, A152 (2018) [73] Blagorodnova, N., Neill, J. D., et al., The SED Machine: A Robotic Spectrograph for Fast Transient Classification, Publications of the Astronomical Society of the Pacific, 130, 035003 (2018)