
Cosmological 

Models and

Distances 

Ay 21



Solving the Friedmann Equation

In order to solve it, we also need to define the behavior of 

the mass/energy density  (a) of any given mass/energy 

component.  Recall the basic GR paradigm:

We already saw that:

Each component will lead to a different evolution in redshift

Density determines the expansion
Expansion changes the density

Expansion 
rate

Density 
measures
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The Equation of State
• Defines the dependence of the density vs. volume for a given 

matter/energy component, to enter in the Friedman eq.

• Usually written as  p = w 

• This is not necessarily the best way to describe the matter / 

energy density; it implies a fluid of some kind…  This may be 

OK for the matter and radiation we know, but maybe it is not 

an optimal description for the dark energy

• Special values:

w = 0  means p = 0,  e.g., non-relativistic matter

w = 1/3 is radiation or relativistic matter

w = −1 looks just like a cosmological constant

… but it can have in principle any value, and it can be 

changing in redshift 
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Evolution of the Density

• Matter dominated (w = 0):   ~ a –3 
• Radiation dominated (w = 1/3):    ~ a –4

• Cosmological constant (w = –1):   = constant
• Dark energy with w < –1 e.g., w = –2:    ~ a+3

– Energy density increases as is stretched out!
– Eventually would dominate over even the energies 

holding atoms together! (“Big Rip”)

Generally,  ~ a–3(w+1) 

In a mixed universe, different components will dominate 
the global dynamics at different times
Note also that in principle, w could be a function of time, 
density, etc.
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What is Dominant When?
Matter dominated (w = 0):    ~ a –3 
Radiation dominated (w = 1/3):    ~ a –4

Dark energy (w ~ –1):   ~ constant

• Radiation density decreases the fastest with time 
– Must increase fastest on going back in time
– Radiation must dominate early in the Universe

• Dark energy with w ~ –1 dominates last; it is the dominant 
component now, and in the (infinite?) future

Radiation 
domination

Matter 
domination

Dark energy 
domination
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Some Simple Models
The empty universe:

 = 0, Λ = 0, K = –1 

= c 2 da = c dt a = c t → Linear expansion

Einstein’s static universe:
Cosmological constant is fine-tuned to balance the self-gravity 
of the matter, so that both      = 0 and      = 0.   This requires     
K = +1 and 

However, this model is unstable, and 
even a slightest perturbation leads to 
a resumed expansion.  This is 
Lemaitre’s loitering universe:

a(t)

t
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Using Matter Dominated EdS Model

Big Bang:  t = 0, a = 0
Now:  a = 1, evaluate tnow:

You can also evaluate the age of the universe at any redshift z 
by setting the upper limit of the integral to a = 1 / (1+z)
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Critical density: Hubble time:  tH = 1/H0

For H0 = 70 km/s/Mpc, tH = 14 Gyr

Thus:  8πGρcr / 3 = 1/tH
2 = (8πGρcr / 3)½ a–½ = a–½/tH

a½ da= dt/tH

⎰a½ da = ⎰dt/tH
0

1

0

now

2/3 a3/2 ] = 2/3 = tnow/tH
0

1

tnow  =  2/3 tH











Dynamics of the Universe

• Matter dominated (w = 0):   a ~ t 2/3

▪ Decelerating

• Radiation dominated (w = 1/3):   a ~ t 1/2

▪ Decelerating

• Cosmological constant (w = –1):  a ~ e  t

▪ Accelerating

• Where is the transition?

▪ w > –1/3 decelerating

▪ w < –1/3 accelerating

a(t) ~ t 2/[3(w+1)]In general: (w = Equation of state 
parameter)

(because the power of t is < 1)

(because the power of t is < 1)

(exponentially, since the derivative of 

an exponential is also an exponential) 
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Examples of Models
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Pure 
       

High density
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Classification of the Models

We are 
here

(Ignoring 
Ωrad, since it 
is negligible 
for most of 
the history of 
the universe)
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Distances in Cosmology

A convenient unit is the Hubble distance or radius,

DH = c / H0 = 4.283 h70
-1 Gpc = 1.3221028 h70

-1 cm

and the corresponding Hubble time,

tH = 1 / H0 = 13.98 h70
-1 Gyr = 4.4091017 h70

-1 s

At low z’s, distance D ≈ z DH .  But more generally, the 

comoving distance to a redshift z is:

where

Ωr (1+z)4 + Ωm (1+z)3 + Ωk (1+z)2 + Ω  
Ωk = 1– Ωr – Ωm – Ω 

In general, this integral is not solvable analytically
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Distances in Cosmology

But the quantity really useful in computing the various 

physical quantities of interest is the “transverse comoving 

distance”, where we account for the curvature:

And usually we can neglect r
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Distances in Cosmology

In general this is non-analytic.  In a special case of a  = 0
Universe, we have q0 = 0 / 2, and:

For a non-zero  universe: 

If k > 0 then the sinh becomes a sin and if k= 0 then the 
sinh and the k drop out and all that’s left is the integral, 
which has to be evaluated numerically. 
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Comoving 

Distance

m = 1,

 = 0

m = 0.05,

 = 0

m = 0.2,

 = 0.8
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Luminosity Distance

In relativistic cosmologies, observed flux (bolometric, or 

in a finite bandpass) is:

f = L / [ (4 D2) (1+z)2 ] 

One factor of (1+z) is due to the energy loss of photons, 

and one is due to the time dialation of the photon rate.

A luminosity distance is defined as DL = D (1+z), so that 

f = L / (4 DL
2).

For a specific flux, however,

(since Angstroms are 
also stretched by 1+z)
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Luminosity 

Distance

m = 1,

 = 0

m = 0.05,

 = 0

m = 0.2,

 = 0.8
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Angular Diameter Distance

Angular diameter of an object with a fixed comoving size 

X is by definition

 = X / D

However, an object with a fixed proper size X is (1+z) 

times larger than in the comoving coordinates, so its 

apparent angular diameter will be

                                               = (1+z) X / D

Thus, we define the angular diameter distance

DA = D / (1+z) , so that the angular diameter of an object 

whose size is fixed in proper coordinates is  = X / DA
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Angular 

Diameter 

Distance

m = 1,

 = 0

m = 0.05,  = 0

m = 0.2,

 = 0.8
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Volume Element

This is useful, e.g., when computing the source counts.

Generally, it has to be evaluated numerically.

The total volume out to some z, over the whole sky, is: 
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Volume 

Element

m = 1,  = 0

m = 0.05,

 = 0

m = 0.2,

 = 0.8
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Age and Lookback Time

The time elapsed since some redshift z is:

Generally it has to be integrated numerically, except in 

some special cases, such as  = 0.

Integrating to infinity gives the age of the universe, and 

the difference of the two is the age at a given redshift.
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Lookback 

Time     

and Age

m = 1,  = 0

m = 0.05,  = 0

m = 0.2,  = 0.8
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The Basis of Cosmological Tests

a(t)/a0  = 

1/(1+z)
1

tt0 

now

0

Big bang

D(z)

~ c [t0-t(z)]

0
now

z

Big bang 
at  z = ∞

All cosmological tests essentially consist of comparing 

some measure of (relative) distance (or look-back time) 

to redshift.  Absolute distance scaling is given by the H0.
29



Cosmological Tests: Expected Generic 

Behavior of Various Models

t
| 

t0

0

a(t)/a0

t - t0
0

Models with a lower density and/or positive 

 expand faster, are thus larger, older today, 

have more volume and thus higher source 

counts, at a given z sources are further away 

and thus appear fainter and smaller

Models with a 

higher density 

and lower  

behave exactly 

the opposite

a(t)/a0
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Key Concepts From Today

• To solve the Friedman eq. we need to know how the 
densities of different components change with the 
expansion factor

– That determines what is dominant factor when

– Usually expressed through the equation of state, p = w 

• Solving the simple (single component) models of a(t)
– Einstein–de Sitter model, Ωm+r = 1, is a good approximation for 

the early universe
– Pure   0 model expands exponentially

• Definition of different distances (comoving, luminosity, 
angular diameter)

• Expected general behavior of cosmological models as a 
function of density parameters
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