
Physics 106a/196a – Problem Set 5 – Due Nov 10, 2006

For 106a students, this problem set reviews material in Section 2.2 of the lecture notes that was
already covered in Problem Set 4 and on the exam, and adds new material on Section 2.3 of the
lecture notes – Hamiltonian dynamics, Liouville’s Theorem, Virial Theorem. For 196a students,
the problem set focuses on Section 2.4 of the lecture notes (though remember you are responsible
for Section 2.3 also!). Problems 1-4 are for 106a students only, and 5-8 for 196a students only. 196a
students are encouraged to take a look at 1-4 to get some practice on the Section 2.3 material.
The Virial Theorem was covered in class on Oct 26 but is not covered in the lecture notes. Refer
to Section 7.13 of Thornton for it.

1. (106a) The midterm indicated a need for more practice on Lagrange multipliers, so: do Hand
and Finch 1-22 using an inertial set of coordinates for the box and the pendulum and using
Lagrange multipliers. Specifically: the box position and the pendulum position should use
coordinates xb, yb, xp, yp that are all referenced to the same, inertial origin (don’t confuse these
coordinates with the symbols used in Midterm Exam Problem 4). Be sure you write down
all the constraints in these four coordinates, and you treat all the coordinates as completely
free variables to start with. You should stop after you have obtained the constraints and
equations of motion – it is difficult to solve the system because the constraints are nonlinear
in the coordinates.

2. (106a) Discuss the implications of Liouville’s theorem on the focusing of beams of charged
particles by considering the following simple case. An electron beam of circular cross section
(radius R0) is directed along the z axis. The density of electrons across the beam is constant,
but the momentum components transverse to the beam (px and py) are distributed uniformly
over a circle of radius p0 in momentum space. If some focusing system reduces the beam radius
from R0 to R1, find the resulting distribution of the transverse momentum components. What
is the physical meaning of the result? (Consider the angular divergence of the beam.)

3. (106a) High-temperature heat capacity of a crystal via the Virial Theorem.

Treat a crystal lattice as an ensemble of N harmonic oscillators. The equipartition theorem
from statistical mechanics tells us that, for a three-dimensional crystal, the mean kinetic
energy and the temperature are related by 〈T 〉 = 3

2 k Θ where T is kinetic energy, Θ is
absolute temperature in Kelvins, and k is Boltzmann’s constant. First, use the virial theorem
to relate the temperature Θ of the system to the total energy, including the potential energy
in the harmonic oscillators. From this, calculate the heat capacity, dE/dΘ, where E is the
total energy. (Remember, there are N harmonic oscillators!) The result is known as the Law
of Dulong and Petit.

The Dulong-Petit Law turns out in practice to only be valid at high temperatures. To obtain
a correct result at all temperatures, Einstein showed that one needs to take into account
Bose-Einstein statistics for the vibrations (when quantized as phonons) and Debye showed
that one must take into account the fact that there is a maximum spatial wavelength of these
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vibrations due to the fact that a crystal is not continuous but is made of atoms at regularly
spaced sites. The temperature above which Dulong and Petit is correct is given by the Debye
temperature ΘD, which is simply the temperature corresponding to the energy of the most
energetic (shortest wavelength) vibrational mode, ΘD = h νD/k. Debye temperatures vary
from material to material, but tend to be in the hundreds of Kelvins.

4. (106a) A particle moves in a spherically symmetric force field with potential energy given by
U(r) = −k/r. Calculate the Hamiltonian function in spherical coordinates, and obtain the
canonical equations of motion. Sketch the path that a representative point for the system
would follow on a surface H = constant in phase space. Begin by showing that the motion
must lie in a plane so that the phase space is four-dimensional (r, θ, pr, pθ, but only the first
three are nontrivial). Calculate the projection of the phase space path on the r − pr plane,
then take into account the variation with θ.

5. (196a) One of the attempts at combining the two sets of Hamilton’s equations into one tries
to take q and p as forming a complex quantity. Show directly from Hamilton’s equations of
motion that, for a system with one degree of freedom, the transformation

Q = q + i p P = Q∗

is not canonical if the Hamiltonian is left unaltered. Can you find another set of coordinates
Q′, P ′ that are related to Q, P by a change of scale (possibly different for q and p and
for Q and P ), and that are canonical? Can you construct the generating function for the
transformation?

6. (196a) Using symplectic notation, show that the “product” of two canonical transformations
is also a canonical transformation. By “product”, we mean functional composition:

[f · g] (x) = f(g(x))

Do not use just use the fact that the product of the Jacobian determinants is unity if each
individual transformation has unity Jacobian determinant – make a proof along the lines of
the proof of the symplectic condition in Section 2.4.2 of the lecture notes.

Also, why is any canonical transformation invertible?

Because a product of two canonical transformations is a canonical transformation, and because
any canonical transformation has an inverse that is also a canonical transformation, canonical
transformations form a mathematical group.

7. (196a) A particle of mass m moves in one dimension under a potential V = −k/|x|. For
energies that are negative, the motion is bounded and oscillatory. By the method of action-
angle variables, find an expression for the period of motion as a function of the particle’s
energy.

8. (196a) Show that the Hamilton-Jacobi equation is separable for a particle moving in a poten-
tial of the form

V (r, θ, φ) = Vr(r) +
Vθ(θ)

r2
+

Vφ(φ)
r2 sin2 θ

where r, θ, φ are spherical coordinates. Find the general solution for Hamilton’s Principal
Funcion S(q, P, t) and from it derive the general solution to the equations of motion.
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