Neutrinoless Double Beta Decay

Phys 135c Spring 2007 Michael Mendenhall

Theory Overview

neutrino Lagrangian

 $\nu^c \equiv i\gamma^2\gamma^0\overline{\nu}^{\rm T}$

 $\mathcal{L}_{\nu} = M_D \left[\overline{\nu}_R \nu_L + \overline{\nu}_L^c \nu_R^c \right] + M_L \left[\overline{\nu}_L^c \nu_L + \overline{\nu}_L \nu_L^c \right] + M_R \left[\overline{\nu}_R^c \nu_R + \overline{\nu}_R \nu_R^c \right]$ Majorana Dirac

seesaw mechanism

$$\begin{bmatrix} 0 & M_D \\ M_D & M_R \end{bmatrix} \quad M_R \gg M_D \gg M_L \sim 0$$

$$\lambda_{\pm} = \frac{M_R \pm \sqrt{M_R^2 + 4M_D^2}}{2} \sim \begin{cases} M_R \\ -\frac{M_D^2}{M_R} \end{cases}$$

double beta decay

 \mathcal{C}

 \mathcal{N}

 \mathcal{N}

p

 $\overline{\nu}_e$

p

 $\overline{\nu}_e$

double beta decay

neutrinoless double beta decay

Ve

 \mathcal{N}

 \mathcal{N}

p

p

 $\overline{
u}_e$

double beta decay candidates

decay rates

decay rates

 $\Gamma^{2\nu} = G^{2\nu} \left| M_{GT}^{2\nu} \right|^2$

decay rates

 $\Gamma^{2\nu} = G^{2\nu} \left| M_{GT}^{2\nu} \right|^2$

 $\Gamma^{0\nu} = G^{0\nu} \left| M_{GT}^{0\nu} - \frac{g_V^2}{q_A^2} M_F^{0\nu} \right|^2 \langle m_\nu \rangle^2 \propto \langle m_\nu \rangle^2$

double beta decay rates

TABLE 1 Summary of experimentally measured $\beta\beta(2\nu)$ half-lives and matrix elements^a

Isotope	$T_{1/2}^{2\nu}(y)$	References	$M_{\rm GT}^{2\nu}~({\rm MeV^{-1}})$
⁴⁸ Ca	$(4.2 \pm 1.2) \times 10^{19}$	(55, 56)	0.05
⁷⁶ Ge	$(1.3 \pm 0.1) \times 10^{21}$	(57–59)	0.15
⁸² Se	$(9.2 \pm 1.0) \times 10^{19}$	(60, 61)	0.10
$^{96}\mathrm{Zr}^{\dagger}$	$(1.4^{+3.5}_{-0.5}) \times 10^{19}$	(62–64)	0.12
¹⁰⁰ Mo	$(8.0 \pm 0.6) \times 10^{18}$	(65–70), (71) [†]	0.22
¹¹⁶ Cd	$(3.2 \pm 0.3) \times 10^{19}$	(72–74)	0.12
128 Te ^b	$(7.2 \pm 0.3) \times 10^{24}$	(75, 76)	0.025
130 Te ^c	$(2.7 \pm 0.1) \times 10^{21}$	(75)	0.017
¹³⁶ Xe	>8.1 × 10 ²⁰ (90% CL)	(77)	< 0.03
$^{150}\mathrm{Nd}^\dagger$	$7.0^{+11.8}_{-0.3} imes 10^{18}$	(68, 78)	0.07
²³⁸ U ^d	$(2.0 \pm 0.6) \times 10^{21}$	(79)	0.05

(Elliott & Vogel 2002)

neutrinoless rates

TABLE 2 $\beta\beta(0\nu)$ half-lives in units of 10^{26} y corresponding to $\langle m_{\nu} \rangle = 50$ meV for nuclear matrix elements evaluated in the references indicated

	References						
Nucleus	(20)	(80)	(81)	(82)	(24, 83)	(84)	
⁴⁸ Ca	12.7	35.3			_	10.0	
⁷⁶ Ge	6.8	70.8	56.0	9.3	12.8	14.4	
⁸² Se	2.3	9.6	22.4	2.4	3.2	6.0	
¹⁰⁰ Mo	_	_	4.0	5.1	1.2	15.6	
¹¹⁶ Cd	_	_	_	1.9	3.1	18.8	
¹³⁰ Te	0.6	23.2	2.8	2.0	3.6	3.4	
¹³⁶ Xe	_	48.4	13.2	8.8	21.2	7.2	
150 Nd ^a	_	_	_	0.1	0.2	_	
$^{160}Gd^a$	_	_	_	3.4	_	_	

^adeformed nucleus; deformation not taken into account.

(Elliott & Vogel 2002)

experimental signal

(Elliott & Vogel 2002)

experimental uncertainty

Upper limit on neutrino mass

 $\langle m_{\nu} \rangle = (2.67 \times 10^{-8} \text{eV}) \left[\frac{W}{f x \epsilon G^{0\nu} |M^{0\nu}|^2} \right]^{1/2} \times \frac{1}{\sqrt{MT}}$ no background, usual \sqrt{n} counting statistics

experimental uncertainty

Upper limit on neutrino mass

 $\langle m_{\nu} \rangle = (2.67 \times 10^{-8} \text{eV}) \left[\frac{W}{f x \epsilon G^{0\nu} |M^{0\nu}|^2} \right]^{1/2} \times \frac{1}{\sqrt{MT}}$ no background, usual \sqrt{n} counting statistics

 $|m_{\nu}\rangle = (2.50 \times 10^{-8} \text{eV}) \begin{bmatrix} W \\ f_{x\epsilon}G^{0\nu}|M^{0\nu}|^{2} \end{bmatrix}^{1/2} \times \begin{bmatrix} b\Delta E \\ MT \end{bmatrix}^{1/4}$ real experiments with background

experimental uncertainty

Upper limit on neutrino mass

 $\langle m_{\nu} \rangle = (2.67 \times 10^{-8} \text{eV}) \left[\frac{W}{f x \epsilon G^{0\nu} |M^{0\nu}|^2} \right]^{1/2} \times \frac{1}{\sqrt{MT}}$ no background, usual \sqrt{n} counting statistics

 $\langle m_{\nu} \rangle = (2.50 \times 10^{-8} \text{eV}) \left[\frac{W}{f x \epsilon G^{0\nu} |M^{0\nu}|^2} \right]^{1/2} \times \left[\frac{b \Delta E}{MT} \right]^{1/4}$ real experiments with background

lowering the limit

 $\langle m_{\nu} \rangle = (2.50 \times 10^{-8} \text{eV}) \left[\frac{W}{f x \epsilon G^{0\nu} |M^{0\nu}|^2} \right]^{1/2} \times \left[\frac{b \Delta E}{MT} \right]^{1/4}$

- Good shielding
- Purified materials
 - Underground lab to avoid cosmogenics
- Minimize excess material
- High energy resolution
- Particle tracking
- End product tagging

experimental history

Experiments

experimental history

Heidelberg-Moscow

10.9 kg 86% enriched Ge1990-2003best results to date

Heidelberg-Moscow

10.9 kg 86% enriched Ge 1990-2003
best results to date

GENIUS

GErmanium NItrogen Underground Setup

- 400 kg as 40x40x40 lcm³ crystals
- Sensitivity up to 10²⁶ yr half life
- Cd-Zn-Te detectors

Cadmium-telluride 0-neutrino double-Beta Research Apparatus

Neutrino Ettore Majorana Observatory

⁸²₃₄ Se

 7 kg Mo, 1 kg Se in thin foils (40-60mg/cm²)

- 6180 gas tracking drift cells
- I940 cell plastic scintillator calorimeter

05 04 06 03 100 MO 100 MO 100 MO ¹⁰⁰ Mo (6.9 kg) 07 02 ¹⁰⁰ Mo ⁸² Se (0.93 kg) 08 01 nat Te ¹⁰⁰ Mo Cu (0.62 kg) 09 00 ¹³⁰ Te Cu ¹¹⁶Cd (0.40 kg) 100 Mo 19 10 ¹³⁰ Te (0.45 Kg) 100 Mo 116 Cd 18 ¹⁵⁰Nd (36.5 g) 11 100 Mo 130 Te 100 MO ⁹⁶ Zr (9.43 g) ¹⁰ Mo ¹⁰⁰ Mo 100 MO 17 12 ⁴⁸ Ca (6.99 g) 16 13 15 14 Te (0.61 kg)

Fig. 5. The source distribution in the 20 sectors of NEMO 3.

foil compositions

NEMO 3 detector

wire chamber

electron pair track

- 988 (5cm)³ 750g TeO₂ bolometer cubes
- 7-10mK operating temperature by dilution refrigeration

$$c_v \propto T^3$$

"All right, but apart from the sanitation, the medicine, education, wine, public order, irrigation, roads, a fresh water system, and public health, what have the Romans ever done for us?" -Monty Python, Life of Brian "All right, but apart from the sanitation, the medicine, education, wine, public order, irrigation, roads, a fresh water system, and public health, what have the Romans ever done for us?"

-Monty Python, Life of Brian

answer: low radiation lead

prototype: 200kg Xe, to be installed at WIPP full: 10 Tons (!) enriched liquid Xe

"ion grabber"

- Easy to enrich and purify
- Acts as a scintillator
- "Time Projection Chamber" (TPC) configuration gives full electron tracking
- No long-lived activation isotopes
- Possible to identify resulting ¹³⁶Ba

