Indían X-ray Polarímeter (POLIX) Onboard X-ray Polarímetry Satellíte (XPoSat)

- X-ray polarization measurement methods and POLIX
- Some of the Key science issues to be addressed with POLIX
- POLIX in the context of other missions

Bíswajít Paul Raman Research Instítute Bangalore

X-ray Polarimetry Satellite

X-ray Polarisation

Polarisation is relatively unexplored in High Energy Astrophysics

x-ray emission from the following processes should be polarised

Emíssíon, transmissíon through magnetic field
Emíssíon, scattering from non-spherical plasma
Synchrotron, Cyclotron, Non-Thermal Bremsstrahlung

These objects should produce polarised X-ray radiation

Accretion powered pulsars
Rotation powered pulsars
Magnetars
Pulsar wind nebulae
Non-thermal supernova remnants
Black holes, micro-quasars and active galactic nuclei
Low Mass X-ray Binaries
Solar X-rays
Gamma Ray Bursts

Chandra X-ray Observatory

Imaging

RXTE / Astrosat

POLARIZEI INCIDENT PHOTON

SCATTERING DISTRIBUTION

SCATTERED PHOTONS PREAMPLIFIER COLLIMATO

ELECTRONIC

Fig. 1.

Hitomi

X-ray Polarimetry: Past, Present, and near Future

ASTROSAT - CZTI Compton Scattering

IXPE / Photoelectron Polarimeter

POLIX - XPoSat Thomson Scattering⁵

OSO - 8 / Bragg Reflection

X-ray Polarimetry: Techniques

•Bragg reflection: < 3 ke∨

•Photo-electrontrack: 2-8 kev

•Thomson scattering: 5-30 keV

•Compton scattering:> 30 Ke√

•MeV-GeV-Tev band polarimetry being explored

•Pointed : for known X-ray sources

•Wíde field: for GRBs

Thomson X-ray Polarimeter

Instrument Configuration

Satellite Requirement

Absolute Pointing Accuracy: < 0.1 degree

Spín around viewing axis: 0.2 rpm

Long Observations: 1-4 weeks on one source

Maximum possible duty cycle

POLIX

Electronics

POLIX Specifications

Parameter	Value
Photon Collection Area	640 cm ²
Field of View	3 degree x 3 degree
Energy Range	8-30 keV
Detectors	Proportional Counters
Scatterer	Beryllium
Dimension	650 mm x 650 mm x 600 mm
Mass	125 kg
Power	87 Watt
Data Rate	6.5 Gb per day
Modulation factor	40-44%

Mechanical configuration.....

Wireframe

A fully wired wireframe

Principle of charge division

- Príncíple of Charge Dívísíon.
- Resistive Nichrome wires
- Wires looped together at the ends

Collímator

- Restricts the field of view to 3 deg x 3 deg
- · Hexagonal tapered holes
- Flat top response (±0.2 deg) to mítigate pointing offset POLIX Overview, XPoSat PDR, 8 October 2018

Laboratory Unit

Polarísed X-ray Source

Test Results

Test Results

Test Results

22

POLIX detector system

Front-end electronics

Processing Electronics

CE card

X-ray SPECtroscopy and Timing (X.SPECT) Payload

X-ray CCD - Swept Charge Device

0.8-15.0 keV

64 cm^2

200 eV resolution at 6 keV

POLIX: Mínímum Detectable Polarísation

$$\text{MDP} = \frac{4.29}{\mu r} \sqrt{\frac{r+b}{T}} = \frac{4.29}{\mu} \frac{1}{\sqrt{N}} \sqrt{1+\frac{b}{r}},$$

•5% MDP for 100 mCrab

POLIX effective area

POLIX: Sensitivity

Símulated Crab Spectrum

POLIX: Símulation results

POLIX MDP for Accretion Powered Pulsars

POLIX 3 sigma sensitivity for 1000, 252 and 31.5 ks observation (background 10.8 counts sec⁻¹)

Accreting X-ray Pulsars

Meszaros et al. 1988

Meszaros et al. 1988

Detection of X-ray Polarisation in Accretion Powered Pulsars

Key signature of strong Magnetic field in Accretion Powered pulsars Pulse phase dependence of X-ray Polarisation in Accretion Powered Pulsars

Determination of beaming pattern in Accretion powered pulsars

Energy dependence of X-ray Polarisation in Accretion Powered Pulsars

Enhanced polarisation near cyclotron line energy

Luminosity dependence of X-ray Polarisation in Accretion Powered Pulsars

Change of accretion column structure

Luminosity dependence of Pulse phase dependence of X-ray polarisation

Change of beaming pattern

Black Holes in Binaries

Spectral States of X-ray Binaries

POLIX (ISRO) and IXPE (NASA)

8-30 keV

2-8 keV

Complementary Energy Bands