
Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 1[Distribution Statement A] Approved for public release and unlimited distribution.© 2024 Carnegie Mellon University [Distribution Statement A] Approved for public release and unlimited distribution.

J U L Y 1 5 , 2 0 2 4

Bjorn Andersson

Two ways to use AI for assurance of
critical software

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 2[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2024 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission should
be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM24-0796

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 3[Distribution Statement A] Approved for public release and unlimited distribution.

• My background (and how it relates to space)

• Using Large-Language Model (LLM) for Hazard Analysis

• Using Artificial Intelligence for Worst-Case Execution Time Analysis

Agenda

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 4[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

My background (and how it relates to space)

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 5[Distribution Statement A] Approved for public release and unlimited distribution.

time1969

Apollo program:
We need to
schedule real-
time tasks on a
single
processor.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 6[Distribution Statement A] Approved for public release and unlimited distribution.

time1969

Apollo program:
Fixed-priority
preemptive
scheduling is a
good idea [1].

[1] Liu, C. L. Scheduling algorithms for hard-real-time multiprogramming of a single processor. JPL Space Programs
Summary 37,60, Vol. II, Jet Propulsion Lab., Calif. Inst. of Tech., Pasadena, Calif., Nov. 1969

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 7[Distribution Statement A] Approved for public release and unlimited distribution.

time1969

Apollo program:
Assign priorities
to process
according to
rate-monotonic
(short period
yields high
priority) [1].

[1] Liu, C. L. Scheduling algorithms for hard-real-time multiprogramming of a single processor. JPL Space Programs
Summary 37,60, Vol. II, Jet Propulsion Lab., Calif. Inst. of Tech., Pasadena, Calif., Nov. 1969

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 8[Distribution Statement A] Approved for public release and unlimited distribution.

time1969

Apollo program:
Single
processor
system: Rate-
Monotonic has
utilization bound
69% [1].

[1] Liu, C. L. Scheduling algorithms for hard-real-time multiprogramming of a single processor. JPL Space Programs
Summary 37,60, Vol. II, Jet Propulsion Lab., Calif. Inst. of Tech., Pasadena, Calif., Nov. 1969

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 9[Distribution Statement A] Approved for public release and unlimited distribution.

time1969

Apollo program:
Single
processor
system: Rate-
Monotonic has
utilization bound
69% [1].

[1] Liu, C. L. Scheduling algorithms for hard-real-time multiprogramming of a single processor. JPL Space Programs
Summary 37,60, Vol. II, Jet Propulsion Lab., Calif. Inst. of Tech., Pasadena, Calif., Nov. 1969

A rich research literature and practice was developed for
Rate-Monotonic.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 10[Distribution Statement A] Approved for public release and unlimited distribution.

time1969

Apollo program:
Multi-processor
system: Rate-
Monotonic has
utilization bound
approaching 0%
[2].

[2] C. Liu, "Scheduling algorithms for multiprocessors in a hard real-time environment," in JPL Space Programs Summary,
vol. 37-60. JPL, Pasadena, CA, 28–31, 1969.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 11[Distribution Statement A] Approved for public release and unlimited distribution.

time1969 2001

Apollo program:
Multi-processor
system: Rate-
Monotonic has
utilization bound
approaching 0%
[2].

[3] B. Andersson, S. Baruah, and J. Jonsson, "Static-priority scheduling on multiprocessors," IEEE RTSS, 2001.

Multi-processor
system: There is
another way of
assigning
priorities; this
yields utilization
bound 33% [3].

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 12[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Using Large-Language Model (LLM) for
Hazard Analysis

Two ways to use AI for Assurance

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 13[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

A mishap occurs when (i) a certain condition is true about the
technical system, and (ii) a certain condition is true about the
environment.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 14[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

Since we can’t control the environment, let us focus on what we
can control; that is, let us focus on the technical system.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 15[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

A hazard of a technical systems is a condition such that if this
condition is true, and the environment is in a bad state, then a
mishap occurs.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 16[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

If we could find all hazards and eliminate them, then we would
eliminate all mishaps.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 17[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

In practice, we can’t find all hazards but we can find many of
them and we can try to eliminate them.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 18[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

Hazard analysis is about finding hazards.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 19[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

Hazard analysis is about looking at documentation to find
hazards.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 20[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

Hazard analysis is about looking at documentation from various
perspectives to find hazards. One perspective yields one hazard
analysis. Another perspective yields another hazard analysis.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 21[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is about Safety
Environment (that we can’t control)

Technical system (that we design and can control)

Hazard analysis is not about proving correctness properties. It is
about discovering issues.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 22[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is Laborious and Expensive
Environment (that we can’t control)

Technical system (that we design and can control)

It takes a lot of time and money for humans to read and analyze
documents.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 23[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is Hard to Automate
Environment (that we can’t control)

Technical system (that we design and can control)

It requires common-sense reasoning, contextual knowledge
about the technical system and its environment, and background
knowledge (that most humans have).

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 24[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis is Hard to Automate
Environment (that we can’t control)

Technical system (that we design and can control)

Idea: An LLM can “simulate” human thinking. Hence, using an
LLM for hazard analysis seems worthwhile.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 25[Distribution Statement A] Approved for public release and unlimited distribution.

Our Tool for Hazard Analysis using LLM
Name of system (e.g., Airbus A333)

Download public documents about the system
from internet

Documents about system

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 26[Distribution Statement A] Approved for public release and unlimited distribution.

Our Tool for Hazard Analysis using LLM
Name of system (e.g., Airbus A333)

Download public documents about the system
from internet

Given these documents, ask LLM to find hazards

Documents about system

Hazards about system

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 27[Distribution Statement A] Approved for public release and unlimited distribution.

Our Tool for Hazard Analysis using LLM
Name of system (e.g., Airbus A333)

Download public documents about the system
from internet

Given these documents, ask LLM to find hazards

Documents about system

“The Airbus A330 carries various hazards related to operational, maintenance, and environmental
factors, including its electrical, fuel, engine, hydraulic, and wastewater systems. …..”

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 28[Distribution Statement A] Approved for public release and unlimited distribution.

The Quality of the Output from Hazard Analysis Depends
on the Quality of Input

Name of system (e.g., Airbus A333)

Download public documents about the system
from internet

Given these documents, ask LLM to find hazards

Documents about system

“The Airbus A330 carries various hazards related to operational, maintenance, and environmental
factors, including its electrical, fuel, engine, hydraulic, and wastewater systems. …..”

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 29[Distribution Statement A] Approved for public release and unlimited distribution.

Hazard Analysis based on Detailed Documents (Proprietary) yields better
output than Superficial Documents (Publicly Available)

Name of system (e.g., Airbus A333)

Download public documents about the system
from internet

Given these documents, ask LLM to find hazards

Documents about system

“The Airbus A330 carries various hazards related to operational, maintenance, and environmental
factors, including its electrical, fuel, engine, hydraulic, and wastewater systems. …..”

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 30[Distribution Statement A] Approved for public release and unlimited distribution.[Distribution Statement A] Approved for public release and unlimited distribution.

Using Artificial Intelligence for Worst-Case
Execution Time Analysis

Two ways to use AI for assurance

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 31[Distribution Statement A] Approved for public release and unlimited distribution.

What is Worst-Case Execution Time?
Execution time

Different inputs to a
program

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 32[Distribution Statement A] Approved for public release and unlimited distribution.

What is Worst-Case Execution Time?
Execution time

Different inputs to a
program

WCET

BCET

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 33[Distribution Statement A] Approved for public release and unlimited distribution.

What is Worst-Case Execution Time Estimate?
Execution time

Different inputs to a
program

WCET

BCET

Estimated
WCET

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 34[Distribution Statement A] Approved for public release and unlimited distribution.

What is Worst-Case Execution Time Estimate?
Find WCET estimate
Execution time

Different inputs to a
program

WCET

BCET

Estimated
WCET

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 35[Distribution Statement A] Approved for public release and unlimited distribution.

What is Worst-Case Execution Time Estimate?
Find WCET estimate with small overestimation
Execution time

Different inputs to a
program

WCET

BCET

Estimated
WCET

overestimation

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 36[Distribution Statement A] Approved for public release and unlimited distribution.

Why is Worst-Case Execution Time Analysis Challenging?

Software Complexity
• The number of execution paths in a program tends to be very large and input

dependent. We cannot explicitly enumerate all of them.

Hardware Complexity
• Even for a single path in a program, the execution time depends on (i) initial state

(variable initialization), (ii) state of the hardware (dirty cache blocks initially), (iii)behavior
of hardware (cache, pipelining, etc).

• On a multicore, it gets even more complex because the execution time of a program
depends on co-runners.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 37[Distribution Statement A] Approved for public release and unlimited distribution.

Our Method

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 38[Distribution Statement A] Approved for public release and unlimited distribution.

A Highly Simplified View of Our Method
Execution time

Different inputs to a
program

Four execution time measurements with different inputs

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 39[Distribution Statement A] Approved for public release and unlimited distribution.

A Highly Simplified View of Our Method
Execution time

Different inputs to a
program

We don’t have any
execution time
measurements here

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 40[Distribution Statement A] Approved for public release and unlimited distribution.

A Highly Simplified View of Our Method
Execution time

Different inputs to a
program

It seems like we would
have longer execution
time with inputs here.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 41[Distribution Statement A] Approved for public release and unlimited distribution.

A Highly Simplified View of Our Method
Execution time

Different inputs to a
program

Idea:
Detect a trend and
accentuate it.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 42[Distribution Statement A] Approved for public release and unlimited distribution.

Our Method

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 43[Distribution Statement A] Approved for public release and unlimited distribution.

Our Method

Our method can find a WCET estimate even if (i) we do not
have source code of program, and (ii) we do not have
documentation of hardware.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 44[Distribution Statement A] Approved for public release and unlimited distribution.

Our Method

Our method can find counter-intuitive effects that humans can’t
find and other WCET analysis tools can’t find.

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 45[Distribution Statement A] Approved for public release and unlimited distribution.

Our Method

Our method can find counter-intuitive effects that humans can’t
find and other WCET analysis tools can’t find.
Details at:
DOT/FAA/TC-23/06 Assessing the Use of Machine Learning to Find
the Worst-Case Execution Time of Avionics Software
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/r
esearch/TC2306

Two ways to use AI for assurance of critical software
© 2024 Carnegie Mellon University 46[Distribution Statement A] Approved for public release and unlimited distribution.

Bjorn Andersson
Principal Researcher

Telephone: +1 412.268.9243
Email: baandersson@sei.cmu.edu

mailto:baandersson@sei.cmu.edu

