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https://doi.org/10.1142/13123
40 Chapters
95% of AI Discussed is Deep Learning
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AI for Science Foundation Models

Patterns and Foundation Models for Science
MLCommons

A beautiful painting of Advancing Science with AI from the Edge to the Datacenter in style of Monet

with Vijay Janapa Reddi, 
Gregor von Laszewski
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Big and Foundation Models
● Transfer Learning builds AI model in one area and then uses it with modest 

additional training in another area
● Foundation Models follow this to an extreme and train on so much data that model 

can generalize to cover “everything”
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AI Transforming Science and Engineering
● 95% of research described in book is deep learning based, and future will be more 

and not less complicated
● Comparing science with industry AI applications, one finds a much richer set 

of data and data modalities in science
● However (by analyzing 40 chapters in book), one can find many similar patterns so 

that approaches can be re-used across many different application domains
● Strategy 1: Each domain/research group develops individual AI applications informed by good 

ideas discovered in other communities
● Strategy 2: Applications divide into patterns such as time series, imaged-based data, 

accelerator events, Monte Carlo simulations, and one develops a common AI library for each of 
~10 patterns

● Strategy 3: Build one or a very few Science Foundation Models that are pretrained on core 
data, such as earthquake simulations or remote sensing data, and then fine-tuned on 
specialized problems; such as Southern California Earthquakes or identifying icebergs

● Strategies can co-exist and enhance each other
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Science Foundation Models in MLCommons



Foundation Model 
Summary

This table summarizes Science 
Foundation models and some of the 
important studies from commodity 
applications or general research. 
https://sciencefmhub.org/ has a more 
detailed table with full references of the 
the 481 references spread over 208 
projects.
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# arxiv papers with 
Foundation model in 
title or abstract

https://sciencefmhub.org/
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Earthquake Time Series

A beautiful painting of ten small robots under the sun and moon in style of Monet, green color scheme

AI for Science Foundation Models

with John Rundle. Andrea Donnellan, 
LIsa Grant Ludwig, Alireza Jafari
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Earthquakes and Deep Learning 
• There are at least two major computational tasks related to earthquakes

a. Forecast an occurrence of an earthquake; data-driven?
b. Predict damage once an earthquake happens; theory-driven?

• The second b) is complicated but doable as you can get data usable as boundary 
conditions for prediction of the movement of waves of earthquake energy

• a) is challenging as there is physics (theory) governing the movement of plates that 
generates an earthquake.
a. However you don’t know details of plates underground and the friction laws between 

them
b. Further quake is a “phase transition” and not a deterministic motion

• This implies that are “lots of hidden variables”  and one can hope that deep 
learning can model these with hidden neurons

• Looking in a different way, one can observe data about earthquakes (the 
seismic shocks) but not the data needed for a physics simulation

• We need to train a neural network to map observed data into future earthquakes
• Dog barking etc also used as possible harbingers (multi-modal data) of an 

earthquake
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Setting Up Earthquake Time Series
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● Studies of 2400 time series for 0.1 by 0.1 degree Latitude 32 to 36 and Longitude 
-120 to -114 “pixels” (11 km by 11 km)

● Geospatial problems usefully characterised by Nash Sutcliffe efficiency NSE and 
normalized version NNSE = 1/(2-NSE). 

● NSE compares discrepancy between model and data to variation from mean over 
time 

● Earthquakes are spatially correlated as 
measured by fault lines

● Further work will look at simulated data 
where we can switch on and off different 
physics

● Events combined by adding energies 
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Looking at lots of Models, 
Patterns outperform Foundation Models
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Sorted on 
decreasing 
MSE

Hyperparameters 
can change

Radically 
different 
fine-tuning 
methods can 
be used
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Hidden Physics Variables for Earthquakes
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● Many years ago, Gardner and Knopoff(1974) wrote a paper with the title: ‘Is the 
sequence of earthquakes in Southern California, with aftershocks removed, 
Poissonian?” Their abstract:” Yes.” The analysis they did was based on fitting the 
intervals between events to an exponential probability distribution (Poisson statistics).

● But: Rundle et al.(2022) “Does the Catalog of  California Earthquakes, with 
Aftershocks Included, Contain Information about Future Large Earthquakes?” 

○ Our abstract:” Yes.”
● Resolution of seeming Contradiction:
● The ongoing stream of reduced # of medium magnitude earthquakes magnitude > 3.29 

reveals the hidden variables controlling large earthquakes magnitude >= 6.75
● Any of the deep learning neural networks can discover these patterns by adding well 

chosen input streams
● Physics supports this:  “seismic quiescence arising from the physics of strain-hardening of 

the crust prior to major events” http://doi.org/10.1002/essoar.10510940.4
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A  painting in style of Leonardo da Vinci of one small book placed in a earthquake 
fault

Adding Physics motivated Features to Basic model
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Lessons from 
Hydrology Time 
Series

AI for Science Foundation Models

with Eric He
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Orthogonal Functions as Foundation Models I
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● Suppose data known over a window of size W: D(t) is given as d(0).....d(W-1) for t = 
0…W-1

● Let f(l)(t) be an orthogonal polynomial for l=0…∞ with L as internal layer size (size of 
Latent space) so we use l = 0…L-1
○ Fourier series, Legendre polynomials, Laguerre polynomials, wavelets

● Expansion Coefficients are a(l=0…L-1) defined as 
● a(l) = ∫ f(l)(t) D(t) dt integrated over t = 0..W-1
● We can use a numerical integration formula to write a(l) = Σt=0

t=W-1d(t)f(l,t)
○ Many different choices; Midpoint, Trapezoidal, Simpson’s rule; learn best

● f(l,t) is a weight matrix of size L by W mapping input data into expansion coefficients and 
forms the encoder which is independent of D(t)

● The decoder to predict general time T is given as 
● Predicted(T(k=0..K)) = Σl=0

l=L-1a(l) f(l,T(k))
● The L by K weight matrix depends on T(k) but not on D
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Orthogonal Functions as Foundation Models II
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● This is a simple MLP with three layers of 
sizes W L and K

● Different choices of L and functions f(l)(t) 
lead to different Foundation models

● Choice of L (Latent space size) well 
understood and studied and could be 
learnt

● One can also feed in any number of 
orthogonal functions as “known inputs” or 
“exogenous variables” e.g. cos(2πt/365) 
and sin(2πt/365) for t in days - two input 
known time series

Latent
Space

Encoder                    Decoder

2 weeks of
daily data

8 Fourier 
Coefficients

4 Targets

Fourier Functions
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Sensitivity to “Known Inputs” or “Exogenous Variables” I
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● Camels USA -- 7010 days, 671 locations, 27 Static variables  (like aridity, mean 
Temperature), 6 dynamic variables (Precipitation, Streamflow, Solar Radiation, Vapor 
Pressure, minimum and maximum Temperatures)

● Dynamic variables used in all runs
● 5  studies with different “Known Inputs” which are static and dynamic features known 

at all times independent of deep learning model
● Model 2-stage LSTM with layers of size 320 (improves over smaller sizes)

Run Number 1 2 3 4 5

six Dynamic x x x x x

Linear space-time x x x x

cos, sin with 
annual period x x x

27 Static x x

11 extra Fourier, 
Legendre in time x
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Reducing Static Variables with PCA
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● Caravan USA data has 482 catchments over 7010 days with 209 static variables
● 3 Dynamic series predicting the next day
● Calculate correlation matrix of static variables over all catchments
● 34 leading PCA eigenvectors capture 90% of the signal
● Solutions with 209 static variables similar to that with smaller number of 34 static 

eigenvectors.

Example Static variables
Snow cover extent per month
Temperature monthly mean, annual mean/min/max
Wetland Class
Forest Coverage %
Clay fraction in soil 
Silt fraction in soil
Population density 
Nighttime lights
Lithological class
Gross domestic product ………
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Sensitivity to “Known Inputs” or “Exogenous Variables” II
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● Caravan Hysets-- 7010 days, 4621 locations, 209 Static variables  (like aridity, mean 
Temperature), 3 dynamic variables (Precipitation, Streamflow, mean Temperature)

● Dynamic variables used in all runs
● 5  studies with different “Known Inputs” which are static and dynamic features known at all 

times independent of deep learning model
● Model 2-stage LSTM with layers of size 320 (improves over smaller sizes)
● Adding in math functions works well
● Using PCA reduces number of static variables with little impact

Run Number 11 12 13 14 15

Three Dynamic x x x x x

Linear space-time x x x x x
Cos, Sin with annual 
period x x x x

209 Static x x
34 PCA of 209 static

x
add 11 more Fourier, 
Legendre in time x x Largest impact



Foundation Models and Patterns for Science Time SeriesUVA Biocomplexity/CS

LSTM/TFT Description of Covid Data 
Uses Weekly “known input” 
500 most populous counties  of 3142 in the USA
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Annual Behavior seen in Hydrology
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DALL-E Gemini Stable Diffusion: “An ugly painting of the sun shining on a stormy 
sea with ten small black robots swimming in the sea in style of an amateur”

Stable 
Diffusion

χ2, Generative AI, and Surrogates

with Farzana Yasmin Ahmed and 
Vanamala Venkataswamy,
J Quetzalcoatl Toledo-Marin,
Generative Quantum group at TRIUMF

AI for Science Foundation Models

https://mail.google.com/mail/u/0?ui=2&ik=4c78969118&attid=0.2&permmsgid=msg-f:1743406264437339372&th=1831d2c2b2fa74ec&view=att&disp=safe
https://mail.google.com/mail/u/0?ui=2&ik=4c78969118&attid=0.2&permmsgid=msg-f:1743406264437339372&th=1831d2c2b2fa74ec&view=att&disp=safe
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Choice of Variables and Errors
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● Note science data should and often does have credible estimates of errors in 
observables 

○ Also consider correlations and both systematic and statistical errors
● Note if I observe values xi, then in deep learning, I can replace xi by f(xi) for any 

function f with intuitive constraint that f(x) is a  monotonically increasing function of x
● in MSE = Σ (Observed - Predicted)2  or MAE = Σ Abs(Observed - Predicted), 

one weights large observables more in MSE than MAE
● Often there are huge variations in size and many more small observables than large 

observables; larger values tend to have larger errors as in N +- √N for Poisson
● Further the input data is multiplied by weights and passed through activation layers; 

○ Activation will have different impact on large and small observables
● For Earthquakes one typically discusses magnitude = log(Energy E) rather than 

Energy E or strain √E; a huge difference in loss function
● Chisq χ2 = Σ (Observed - Predicted)2 / Error2 is classic or better MSE form is
● Correlated is Σi,j (Observed(i) - Predicted(i)) (Observed(j) - Predicted(j)) C-1(i,j)
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Comparing Logarithm versus Square Root 1950-2019
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Logarithm 
of Energy

Square 
Root of 
Energy



Foundation Models and Patterns for Science Time SeriesUVA Biocomplexity/CS

Generative AI for Kaggle Calorimeter Surrogates
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● AI surrogates must be generative to mimic 
a Monte Carlo

● Errors are largely proportional to √Energy 
and there are significant correlations; 
often ignored

● Generation of simulated events is a significant computing load at LHC
● These are typically generated by GEANT4 from known physics of particle 

material interactions
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Comparison of Geant and Generative Calorimeter Simulators
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● Correlations are large 
● FP16 (.12 sec)versus FP32 

(.22 secs) speeds up as in 
LLM
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Generative AI Surrogate 
Methods
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● GAN
● VAE Variational Autoencoder
● QVAE VAE with Quantum Spin 

Generator from Dwave
● Diffusion models
● Normalizing Flow

● There are two terms in QVAE loss
● Classic MSE loss and a KL Divergence that 

is forcing the distribution to be correct
● It appears one should use real errors and 

correlations but we don’t see this as useful 
so far

Timing of Methods
Geant4 ∼ 1s
GPU (A100) ∼ 2ms
QVAE  0.2ms
QVAE Annealing time ∼ 0.02ms
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A beautiful painting of ten small black robots swimming in the sea with a supercomputer on an island by Constable
A beautiful painting of sixteen small robots outside a gorgeous palace in stormy cloudy sky in style of Leonardo da Vinci. There is a Sun and a Moon in the skyDALL-E

Foundation Models
for Astronomy

with Amirreza Dolatpour,
George Djorgovski 

AI for Science Foundation Models



Astronomy/Remote Sensing Foundation Models
• Train images using vision transformer with masking
• Transformer is alternative to CNN where CNN filters are replaced by transformer 

attention mechanism
• The Foundation model is pretrained by Masked Autoencoder to recreate masked 

images
• Images from 96 by 96 to 224 by 224
• Millionaid is a remote sensing dataset
• Batch size 512, form patches and change masking each batch; 75% masked
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Foundation Models for Astronomy
• Similar to many scientific fields that produce images

• From Universe to electron scales and in many different photon wavelengths
• Illustrate approach with galaxy catalogs 
• The distance of a galaxy comes from magnitude and velocity from redshift which 

is caused by galaxies moving away from the Milky way. This causes the spectrum 
to shift to the red

30

• Either observe individual spectral lines or the 
relative magnitude of different frequency bands

• “All” galaxies have images but not all spectra
• So use “all” images to build a Foundation model to 

understand structure 
• Then fine tune on different data classes: with or 

without spectra; different frequency band choices 
to find redshift with measurement accuracy 
determined by galaxies with spectra



Foundation Model Compared to Training from Scratch
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Conclusions

AI for Science Foundation Models and Patterns
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Lessons for Science Patterns and Foundation Models
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● Need to look at both Patterns and Foundation Models
● Patterns successful in Time Series 

○ Illustrated for Earthquakes and Hydrology
● Exogenous (Known) Inputs should be included
● Fine-tuning of Time Series Foundation models needs more research
● PCA can reduce input and compute size without losing significant information
● Spatial information can be important and included with graph neural networks for 

traffic and earthquake nowcasting
● Image Foundation models also sensitive to fine-tuning
● Understanding of errors and correlations in scientific data can be incorporated in 

statistical distributions for deep learning
● Diffusion models and generative AI broadly important as in recent data assimilation 

breakthroughs for weather forecasting
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The End

AI for Science 
Foundation Models and Patterns


