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This unique collection introduces Al, Machine Learning (ML), and deep neural network technologies leading to scientific discovery
from the datasets generated both by supercomputer simulation and by modern experimental facilities.

Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron
microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in
France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is
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Big and Foundation Models
Transfer Learning builds Al model in one area and then uses it with modest

additional training in another area
Foundation Models follow this to an extreme and train on so much data that model

can generalize to cover “everything”
20 1) .
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Al Transforming Science and Engineering e elerc

e 95% of research described in book is deep learning based, and future will be more
and not less complicated

e Comparing science with industry Al applications, one finds a much richer set
of data and data modalities in science

e However (by analyzing 40 chapters in book), one can find many similar patterns so

that approaches can be re-used across many different application domains
e Strategy 1: Each domain/research group develops individual Al applications informed by good

ideas discovered in other communities

e Strategy 2: Applications divide into patterns such as time series, imaged-based data,
accelerator events, Monte Carlo simulations, and one develops a common Al library for each of
~10 patterns

e Strategy 3: Build one or a very few Science Foundation Models that are pretrained on core
data, such as earthquake simulations or remote sensing data, and then fine-tuned on
specialized problems; such as Southern California Earthquakes or identifying icebergs

e Strategies can co-exist and enhance each other

UVA Biocomplexity/CS




Al for Science

Al for Science Prototyping
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Foundation Model
Summary

This table summarizes Science
Foundation models and some of the
important studies from commodity
applications or general research.
https://sciencefmhub.org/ has a more
detailed table with full references of the
the 481 references spread over 208
projects.

Histogram of quarters with at least one Publication,
Total Articles: 2355 as of 07/14/2024

Table 1: Foundation Model Overall Summary 208 Projects 481 Refs

21 projects, 41 refs Single Modality Image/video-based Models [General] 2020-23: Scaling by Google, MAE: Masked Autoencoders Meta,
DINO Meta, Scaling ViT, Ibot, VideoMAE, Context Autoencoder, Segment Anything, Local Mask, Swin Transformer, Swin MAE, DETR, BYOL,
ConvNeXt, SImCLR, Mask2Former, ALIGN, SEER. (VIT, Swin, ResNet, EfficientNet, RegNety) (1.2M- 4 billion images from 50 GPU days)
I-JEPA, V-JEPA, VitDet

11 projects, 19 refs, Single Modality Image-based models [Remote Sensing ] 2022-23: RingMo, Geograph, SeCo, RVSA, SatMAE, Joint
SAR-Optical, Scale-MAE, Billion-scale Remote Sensing, IBM and NASA HLS Prithvi (Swin, ResNet50, ViTAE, ViT) (23K to 2M images, from 1
GPU-day), Mission Critical, SatlasPretrain

15 projects, 28 refs Multi-modal Image/video + Text [General] 2019-23: CLIP, VILBERT, LXMERT Unified Vision-Language, UniVL, FLAVA,
Owl-Vit, Captions, MELTR, Florence-2 (ResNet, BERT, VIT, Transformer)(Upto 400 million image-text pair, 3.6B text annotations, ~40-10,000
GPU days), MM1, Transframer, Yi, Chameleon, DocLLM

2 project 4 refs Multi-modal Image/video + Text [Remote Sensing] 2022: Contrastive Hashing (ResNet18) (13K images); 2024 use CLIP on
BgiEarthNet and other data

3 projects 7 refs Multi-modal Image + Text + Audio and others [General] 2022-23: IMAGEBIND, AudioCLIP, mPLUG-2 (ViT, ResNe;,
Transformer) (7 modalities, upto 14M images)

1 project 2 refs Multi-modal Image + Audio [Remote Sensing] 2023: audiovisual representation learning (ResNet50)(50,000 image-audio
pairs)

16 project, 45 refs, Single Modality Image-based models [Climate, Weather] 2022-4: ClimaX, AtmoRep, FengWu-GHR, ClimSim,
NowcastNet, Corrformer, ORBIT, CorrDiff, EARTH-2, FourCastNet, FOuRKS, GraphCast, MetNet-3, Fuxi-DA, DiffDA, KARINA

3 projects 9 refs Astronomy Single or Multimodal AstroCLIP Radio Galaxy Zoo

1 project 3 refs Surrogates Physics Simulations

67 projects 182 refs Time Series LLM based{Time-LLM, Lag-Llama, AutoTimes, ST-LLM (Traffic), Tempo, LLMTime, Chronos}, InstructTime,
GPT-As-Classifier), TARNet, FormerTime, TimeMAE, TS-TCC, TS-GAC, CRT, TS2Vec, FEDFormer, Dlinear, SFA,TFC, LPTM, SCOTT,
TimeGPT-1, GHPT, ConvTimeNet, TimesNet, BitCN, PatchTST, N-HIiTS, Timer, TimeXer, iTransformer, SOFTS, TCDFormer, TiDE (Dense
Encoder), TimesFM(Decoder Only), SimMTM, TFT, TSMixer, MLP-Mixer, Automixer, TTM Tiny Time Mixer, SAMFormer, Ms-tct, Dual-Mixer,
tsGT, MAMixer, Sparsity for Multivariate Time-Series, TimeMixer, Moirai, TSLANet, Time Evidence Fusion Network, FM40S,RWKV-TS

17 projects 35 refs Chemistry, Medicine Material Science 2022-23: Uni-Mol, MoLFormer, MUBen, ChemBERTa-2, Chemformer, DeepChem,
graph transformer for molecules, GenSLM for genomes, OpenFold based on AlphaFold2, AlphaFold3, Segment Anything for Medical Images,
Single Cell RNA ScBERT, ScGPT, Geneformer, ScFoundation, ScSimilarity (Transformer, Graph, LLM, ViT)(100M SMILES, 6.4M genomes, 3D
protein structures)

9 projects, 21 refs Pathology 2022-23: UNI, Virchow, DIRL, PLM_SSL, SAM-Path, HiPT, Prompt-MIL, SwiFT (ResNet, ViT) (up to 1.5M Whole
Slides Images)

6 General Projects/Libraries 13 refs 2022-23: TORCHSCALE, Trillion Parameter Consortium (30B Tokens Text + Science),Al Alliance,
MLCommons, DeepSpeed4Science,

w0{ # arxiv papers with
- Foundation model in
title or abstract
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Quarter with at least one publication

13 Projects, 35 refs, Commodity LLMs 2018-23: ChatGPT-4, OpenAl, Llama-2, Meta, Open source, Palm-2, Med-Palm, Google, Bard, Google,
Chinchilla, DeepMind, BLOOM, Claude, Anthropic, RedPajama and SlimPajama, BERT, ROBERTa (Transformer, Mixture of
Experts)(345M-1.76T parameters)

21 Projects 31 refs LLMs for Science 2020-23: BioBERT, ML-Net, PubMedBERT, BioGPT, BLURB, LinkBERT, BioM-ALBERT, BiomedBERT,
Med-Palm2, GeneGPT, CONCH, PLIP, K2, FORGE, OceanGPT, HPC-GPT (Transformer)(68K-200M Science articles, 1.17M Image-text)
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Earthquakes and Deep Learnin

. There are at least two major computational tasks reIaQed to earthquakes
a. Forecast an occurrence of an earthquake; data-driven?
b. Predict damage once an earthquake happens; theory-driven?

. The second b) is complicated but doable as you can get data usable as boundary

conditions for prediction of the movement of waves of earthquake energy

. a) is challenging as there is physics (theory) governing the movement of plates that

generates an earthquake.

a. However you don’t know details of plates underground and the friction laws between
them

b. Further quake is a “phase transition” and not a deterministic motion

. This implies that are “lots of hidden variables” and one can hope that deep

learning can model these with hidden neurons

. Looking in a different way, one can observe data about earthquakes (the

seismic shocks) but not the data needed for a physics simulation

. We need to train a neural network to map observed data into future earthquakes

. Dog barking etc also used as possible harbingers (multi-modal data) of an

earthquake




Setting Up Earthquake Time Series

» Studies of 2400 time series for 0.1 by 0.1 degree Latitude 32 to 36 and Longitude
-120 to -114 “pixels” (11 km by 11 km)

» Geospatial problems usefully characterised by Nash Sutcliffe efficiency NSE and
normalized version NNSE = 1/(2-NSE).

« NSE compares discrepancy between model and data to variation from mean over

fime ST (Qh — @)
o NG
> (@ -Q,)

« Earthquakes are spatially correlated as
measured by fault lines

« Further work will look at simulated data
where we can switch on and off different
physics

« Events combined by adding energies

UVA Biocomplexity/CS
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Looking at lots of Models,

Patterns outperform Foundation Models

Model Architecture Type Pre-training Fine-tuning MSE MAE NNSE

TimeGPT Transformer FM A broad dataset None 0.01042 0.0593 0.5484

S (@) I’te d on iTransformer-M4 Transformer FM M4 Earthquake 0.00702 0.0537 0.5902
. TSMixer-M4 MLP FM M4 Earthquake 0.00651 0.0535 0.6081
decreasin g Chronos Transformer FM A broad dataset None 0.00650 | 0.0519 | 0.6087
MSE PatchTST-TrafficL Transformer FM TrafficL Earthquake | 0.00644 | 0.0501 | 0.6107
TiDE MLP P None Earthquake 0.00643 0.0519 0.6110

TSMixer-TrafficL MLP FM TrafficL Earthquake 0.00643 | 0.0505 | 0.6111

Hyperpa rameters TimesNet CNN P None Earthquake 0.00643 0.0560 0.6112
PatchTST-M4 Transformer FM M4 Earthquake 0.00641 0.0504 0.6117

can C h an g e PatchTST-Weather Transformer FM Weather Earthquake 0.00641 0.0502 0.6119
iTransformer-TrafficL Transformer FM TrafficL Earthquake 0.00639 | 0.0513 | 0.6125

; TCN CNN P None Earthquake 0.00637 0.0535 0.6132
Radical Iy VanillaTransformer Transformer B None Earthquake | 0.00635 | 0.0498 | 0.6141
d Iffe rent TFT Transformer+RNN P None Earthquake 0.00635 0.0555 0.6142
_ _ GNNCoder 2-layer GNN P None Earthquake 0.00632 0.0520 0.6153
fine-tuni ng LSTM RNN P None Earthquake | 0.00631 | 0.0514 | 0.6156
DilatedRNN RNN P None Earthquake 0.00630 0.0510 0.6159

methOdS can GNNCoder 3-layer GNN P None Earthquake 0.00629 | 0.0524 0.6162
be used GNNCoder 1-layer GNN P None Earthquake | 0.00628 | 0.0522 | 0.6166

Table 1. Comparison of the performance of deep learning models for earthquake nowcasting in Southern California, ranked by Mean Squared
Error (MSE) in descending order. The table compares various models used in this work, detailing their architectures, types (FM for Foundation
Model, P for Pattern), and datasets for pre-training and fine-tuning. In case of Patterns, there is no pre-training, and fine-tuning is a supervised

UVA Biocomplexity/JEREaiy:2
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Does the Catalog of California Earthquakes, with Aftershocks mc%eur? RSIaH ShRrRTRIlC e
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. Resolution of seeming Contradiction:

. The ongoing stream of reduced # of medium magnitude earthquakes magnitude > 3.29
reveals the hidden variables controlling large earthquakes magnitude >= 6.75

. Any of the deep learning neural networks can discover these patterns by adding well
chosen input streams

. Physics supports this: “seismic quiescence arising from the physics of strain-hardening of
the crust prior to major events” http://doi.org/10.1002/essoar.10510940.4
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‘Adding Physics motivated Features to Basic model

T

b ,1
NNSE
QR

Model Input MSE MAE

LSTM Single feature 0.00631 0.0514 0.6156 i
LSTM + Multiplicity 0.00630 0.0506 0.6158
DilatedRNN Single feature 0.00630 0.0510 0.6159
LSTM + Multiplicity + EMA 0.00629 0.0527 0.6162 L
LSTM + EMA 0.00628 0.05177 0.6164
GNNCoder 1-layer + Multiplicity 0.00628 0.0520 0.6165
GNNCoder 1-layer Single feature 0.00628 0.0522 0.6166
GNNCoder 1-layer + Multiplicity + EMA 0.00627 0.0517 0.6169
DilatedRNN + Multiplicity 0.00627 0.0517 0.6169
GNNCoder 1-layer + EMA 0.00627 0.0525 0.6172
DilatedRNN + EMA 0.00627 0.0519 0.6174
DilatedRNN + Multiplicity + EMA 0.00625 0.0515 0.6174

A painting in style of Leonardo da Vinci of one small book placed in a earthquake
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Orthogonal Functions as Foundation Models |

Suppose data known over a window of size W: D(t) is given as d(0).....d(W-1) for t =
0...W-1

Let f(I)(t) be an orthogonal polynomial for 1=0...« with L as internal layer size (size of
Latent space) sowe use [ = 0...L-1

o Fourier series, Legendre polynomials, Laguerre polynomials, wavelets

Expansion Coefficients are a(I=0...L-1) defined as

a(l) = [ f(I)(t) D(t) dt integrated over t = 0..W-1

We can use a numerical integration formula to write a(l) = Zt=0t=W'1d(t)f(I,t)

o Many different choices; Midpoint, Trapezoidal, Simpson’s rule; learn best

f(1,t) is a weight matrix of size L by W mapping input data into expansion coefficients and
forms the encoder which is independent of D(t)

The decoder to predict general time T is given as
Predicted(T(k=0..K)) = £ _,""a(l) f(I, T(k))
The L by K weight matrix depends on T(k) but not on D




Orthogonal Functions as Foundation Models II

e This is a simple MLP with three layers of Encoder ~ _  Decoder
sizes WL and K — ) Latent
e Different choices of L and functions f(I)(t) — Space
lead to different Foundation models ~\\“‘§§‘=«4
e Choice of L (Latent space size) well — §§§\\“‘3\"/’
understood and studied and could be TS —
learnt
« One can also feed in any number of — <~ .
?rthogonal funcfuons %S Known inputs” or 4 Targets
exogenous variables” e.g. cos(21t/3695) .
d sin(2Tt/365) for ¢ in days - two input 0 Fourier
an sm(. ] .) or tin days - two inpu Coefficients
known time series ' . .
2 weeks of Fourier Functions

daily data

16
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Sensitivity to “Known Inputs” or “Exogenous Variables” |

. Camels USA -- 7010 days, 671 locations, 27 Static variables (like aridity, mean
Temperature), 6 dynamic variables (Precipitation, Streamflow, Solar Radiation, Vapor
Pressure, minimum and maximum Temperatures)

« Dynamic variables used in all runs

« 5 studies with different “Known Inputs” which are static and dynamic features known
at all times independent of deep learning model

« Model 2-stage LSTM with layers of size 320 (improves over smaller sizes)

MSE for Precipitation and Solar Radiation versus Known Inputs

Run Number 1 2 3 4 5
X Prcp X Sun
. . 0.005
six Dynamic X X X X X
0.004 X
. . X
Linear space-time X X X X X 0 X X
0.003 X X X
i X
cos, sin with 2 0002
) X X X :
annual period
0.001
27 Static X X
0.000
0 1 2 3 4 5

11 extra Fouirier,
Legendre in time Run Number




Reducing Static Variables with PCA

. Caravan USA data has 482 catchments over 7010 days with 209 static variables

« 3 Dynamic series predicting the next day

» Calculate correlation matrix of static variables over all catchments

. 34 leading PCA eigenvectors capture 90% of the signal

» Solutions with 209 static variables similar to that with smaller number of 34 static
eigenvectors.

CARAVAN US PCA EXPERIMENT

Original Static PCA Static

MSE NNSE MSE NNSE

Example Static variables

Snow cover extent per month R— Train  0.002920  0.851 0.002994  (.848
T t thi | /min/ Precipitation

emperature monthly mean, annual mean/min/max Val 0.004307  0.801 0.004264  0.800
Wetland Class
Forest Coverage % Mean Train  0.000468 0967  0.000468  0.967
Clay fraction in soil e
Silt fraction in soil Temperature v, 0.000573  0.963  0.000548  0.965
Population density
Nighttime lights Train  0.000525 0.814  0.000569  0.799

Streamflow

Lithological class
Gross domestic product .........

UVA Biocomplexity/CS

Val 0.000955  0.703  0.000989  0.703




Sensitivity to “Known Inputs” or “Exogenous Variables” Il

Caravan Hysets-- 7010 days, 4621 locations, 209 Static variables (like aridity, mean

Temperature), 3 dynamic variables (Precipitation, Streamflow, mean Temperature)

Dynamic variables used in all runs

5 studies with different “Known Inputs™ which are static and dynamic features known at all

times independent of deep learning model

Model 2-stage LSTM with layers of size 320 (improves over smaller sizes)

Adding in math functions works well

Using PCA reduces number of static variables with little impact

Run Number

Three Dynamic

Linear space-time

Cos, Sin with annual
period

209 Static
34 PCA of 209 static

add 11 more Fouirier,

Legendre in time

11

X

X

12

X

X

X

13

X

X

MSE for Total, Precipitation and Flow

@ Total @ Prcp Flow

0.005
®

0.004 ®
@
0.003 ®

MSE

0.002

0.001

0.000

1 12

x Largest impact

13 14

Run Number

15



LSTM/TFT Description of Covid Data

Uses Weekly “known input”
500 most populous counties of 3142 in the USA

MSE F=0.000116 5=0.000102 E=0.00013 TOTAL dErr/Sur Obs 2.53%

~—— prediction

= error

' ‘“M
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Annual Behavior seen in Hydrology

Total Training HydroIN3AnewLSTM33 QObs(mm/d) 175 Total Validation HydroIN3AnewlLSTM33 QObs(mm/d)
600 = 150 =
500 = 125 =
5400- 5100_
E £
E E
2 300~ 9 5=
8 8
200 = — real 50 = — real
—— prediction —— prediction
100 b= —— error 25 b —— error
L mkddsshtidiiaadibiionsiubdiiiil schonlrbistioditdsbliban s indoniion | solestoeniobibhnadiddinndattondiniubsdisalaiininaioudosbininsnndoinbiinmed
OF | | | | | | | | OF | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Days Days

UVA Biocomplexity/CS



with Farzana Yasmin Ahmed and

Vanamala Venkataswamy,

J Quetzalcoatl Toledo-Marin, g
S Generatlve Quantum group at TRIUMF

DALL-E Gemini Stable Diffusion: “An ugly painting of the sun shining on a stormy
sea with ten small black robots swimming in the sea in style of an amateur”
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Choice of Variables and Errors

Note science data should and often does have credible estimates of errors in

observables
o Also consider correlations and both systematic and statistical errors

Note if | observe values x, then in deep learning, | can replace x. by f(x.) for any

function f with intuitive constraint that f(x) is a monotonically increasing function of x

in MSE = % (Observed - Predicted)? or MAE = X Abs(Observed - Predicted),

one weights large observables more in MSE than MAE

Often there are huge variations in size and many more small observables than large

observables; larger values tend to have larger errors as in N +- VN for Poisson
Further the input data is multiplied by weights and passed through activation layers;
o Activation will have different impact on large and small observables

For Earthquakes one typically discusses magnitude = log(Energy E) rather than
Energy E or strain VE; a huge difference in loss function

Chisq x? = Z (Observed - Predicted)? / Error? is classic or better MSE form is

Correlated is Zij (Observed(i) - Predicted(i)) (Observed(j) - Predicted(j)) C(i,j)




Comparlng Logarlthm versus Square Root 1950-2019

Observables summed over space
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Generative Al for Kaggle Calorimeter Surrogates

e Generation of simulated events is a significant computing load at LHC
e These are typically generated by GEANT4 from known physics of particle
material interactions

« Al surrogates must be generative to mimic
a Monte Carlo

. Errors are largely proportional to VEnergy
and there are significant correlations;
often ig nored 3018 2070 3072 3074 3076 3078 3030 30% Herest (fed EvGen

Year

(@ (b)

ATLAS Preliminary. 2028 CPU resource needs
............................ MC fast calo sim + fast reco, generators speed up x2
I ATLAS Prelimina 7 :
100? CPU resource needs ry ] MC-Full(Sim)

L N Data Proc
|— 2018 estimates: -
I v MC fast calo sim + standard reco 1
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» In nuclear and particle physics calorimetry .
refers to the detection of particles through Hadronis
total absorption in a block of matter

— The measurement process is Electromagnetic - (S
Calorimeter  », "\ ;

Calorimeter

destructive for almost all particle

— The exception are muons (and
neutrinos) — identify muons easily since
they penetrate a substantial amount of
matter

+ In the absorption, almost all particle’s
energy is eventually converted to heat —
calorimeter

 Calorimeters are essential to measure 'ANT simulation of a 100 GeV electron shower in the NA48 liquid Krypton calorimeter (D.Schinze
neutral particles




Comparison of Geant and Generative Calorimeter Simulators

e Correlations are large

e FP16 (.12 sec)versus FP32
(.22 secs) speeds up as in
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Figure 1: Histogram of two physics observables for dataset 2.
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Generative Al Surrogate
Methods

GAN

VAE Variational Autoencoder
QVAE VAE with Quantum Spin
Generator from Dwave
Diffusion models

Normalizing Flow

There are two terms in QVAE loss

Classic MSE loss and a KL Divergence that
is forcing the distribution to be correct

It appears one should use real errors and
correlations but we don’t see this as useful
so far

Timing of Methods

Geant4 ~ 1s

GPU (A100) ~ 2ms

QVAE 0.2ms

QVAE Annealing time ~ 0.02ms

Variational Autoencoders
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Al for Science Foundation Models
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with Amirreza Dolatpour,
George Djorgovski
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A beautiful painting of ten small black robots swimming in the sea with a supercomputer on an island by Constable

DALL-E A beautiful painting of sixteen small robots outside a gorgeous palace in stormy cloudy sky in style of Leonardo da Vinci. There is a Sun and a Moon in the sky




Astronomy/Remote Sensing Foundation Models

. Train images using vision transformer with masking

. Transformer is alternative to CNN where CNN filters are replaced by transformer
attention mechanism

. The Foundation model is pretrained by Masked Autoencoder to recreate masked
Images

. Images from 96 by 96 to 224 by 224

. Millionaid is a remote sensing dataset

. Batch size 512, form patches and change masking each batch; 75% masked

.
. B
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s =" BN R

Bl -a s 3 N . 3 .
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[] 1
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Pretraining in MillionAID by MAE ™™ | I e



Foundation Models for Astronomy

Similar to many scientific fields that produce images
From Universe to electron scales and in many different photon wavelengths

lllustrate approach with galaxy catalogs

The distance of a galaxy comes from magnitude and velocity from redshift which
Is caused by galaxies moving away from the Milky way. This causes the spectrum
to shift to the red

Either observe individual spectral lines or the

0.35 +—

relative magnitude of different frequency bands
“All” galaxies have images but not all spectra o] . Al
So use “all” images to build a Foundation model to ...

understand structure Soas{ o - MR
Then fine tune on different data classes: with or i )
without spectra; different frequency band choices

to find redshift with measurement accuracy "o o ih
determined by galaxies with spectra

30



Foundation Model Compared to Training from Scratch

TABLE IV: Redshift Prediction Using Various Architectures Based on Transformer Layers and CNNs

Architectures Metrics
Type Name MSE MAE Bias Precision R?
from-scratch plain-ViT-magnitude 0.00077 0.01871 0.00153 0.01736 0.93580
. o from-scratch pcm-ViT-magnitude 0.00057 0.01604 -0.00035 0.01458 0.95204
Snpervised. raining Henghes et al. [38] 0.00058 0.01568 0.00108 0.01443 0.95176
(from scratch)
from-scratch plain-ViT 0.00097 0.02123 0.00049 0.01957 0.91871
from-scratch pcm-ViT 0.00063 0.01686 -0.00122 0.01554 0.94764
Inception-only redshift prediction 0.00064 0.01705 0.00132 0.01593 0.94625
plain-ViT-magnitude 0.00068 0.01740 -0.00007 0.01596 0.94334
pcm-ViT-magnitude 0.00060 0.01655 -0.00095 0.01522 0.94939
Bl e Proposed plain-AstroMAE 0.00056 0.01558 0.00097 0.01429 0.95336
Proposed pcm-AstroMAE 0.00053 0.01520 -0.00037 0.01391 0.95601
plain-ViT 0.00086 0.01970 -0.00060 0.01775 0.92790
pcm-ViT 0.00084 0.01945 -0.00114 0.01737 0.92950
plain-ViT-inception 0.00059 0.01622 -0.00009 0.01496 0.95029
pcm-ViT-inception 0.00059 0.01601 0.00042 0.01458 0.95095
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Lessons for Science Patterns and Foundation Models

« Need to look at both Patterns and Foundation Models

. Patterns successful in Time Series
o lllustrated for Earthquakes and Hydrology

» Exogenous (Known) Inputs should be included

« Fine-tuning of Time Series Foundation models needs more research

« PCA can reduce input and compute size without losing significant information

« Spatial information can be important and included with graph neural networks for
traffic and earthquake nowcasting

. Image Foundation models also sensitive to fine-tuning

« Understanding of errors and correlations in scientific data can be incorporated in
statistical distributions for deep learning

. Diffusion models and generative Al broadly important as in recent data assimilation
breakthroughs for weather forecasting







