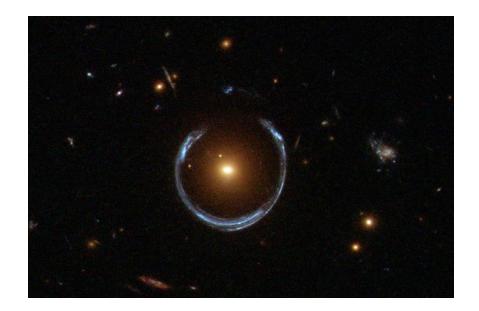
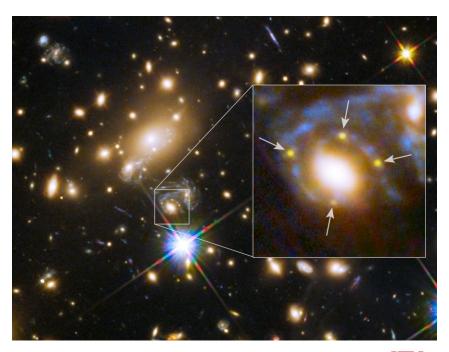
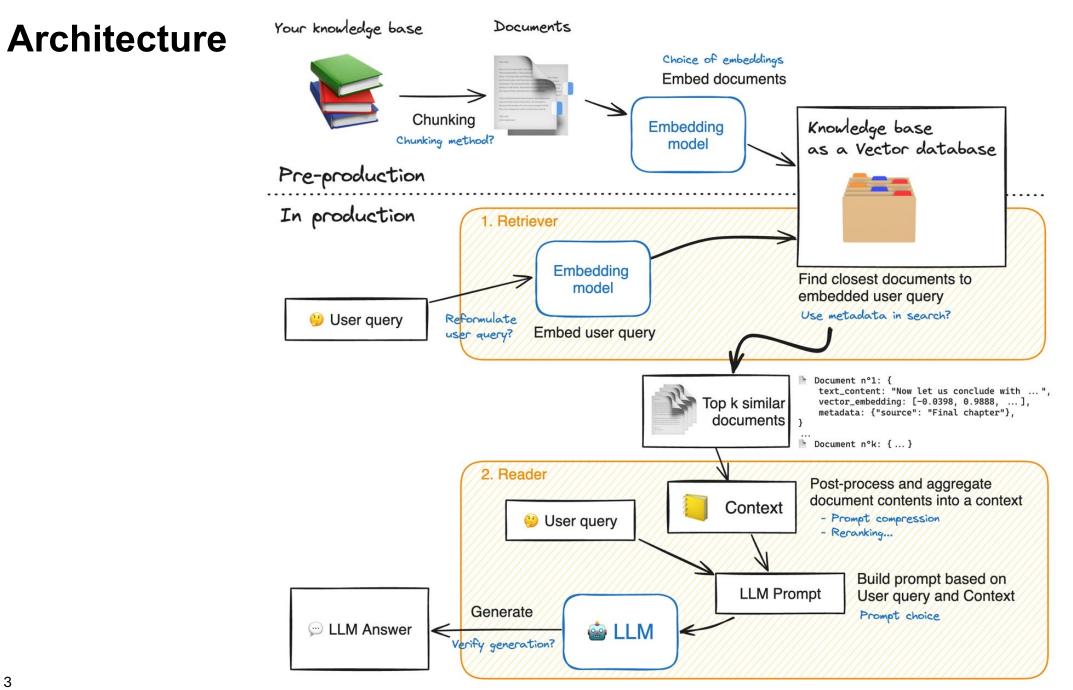


Intelligent Contextual Parsing and Synthesis of Disparate Information from Publications using Large Language Models


July 15, 2024


Jack Lightholder jack.a.lightholder@jpl.nasa.gov


Leonidas Moustakas, Jake Lee, Mario Damiano

Opportunity

- Scientists spend thousands of hours curating databases of domain specific classes of data.
- New data is frequently buried in published literature, not easily machine readable or centralized.
- Gravitational lenses are going through a discovery renaissance thanks to missions like Euclid, JWST & Rubin.
- Lens database expected to go from 1,000s of known object to 100,000s in the next decade. Manual curation of known lenses won't scale.
- We're developing a prototype LLM based system to facilitate parsing literature and extracting newly published gravitational lenses.
- Leveraging data driven methods to identify classes of information commonly published about lens objects to inform storage architecture for future databases.
- Part of a larger effort to build a community hub for contributing newly found lenses

Approach

- Curated and labeled gravitational lens literature
 - Identified papers representing common and challenging literature sources
- Deployed mixture of local and commercial models
 - Selection intended to span the options a scientist might consider utilizing
- Developed multiple prompt tree architectures to evaluate
- Developed JSON template to curate gravitational lens content populated by LLM
- Aggregated lessons learned for upcoming publication

System Name	$m_{I_{814}}$ (Obs.)	$\Delta m_{I_{814}}$ (extin.)	$R_{ m eff}$ ('')	q
(1)	(2)	(3)	(4)	$(\overline{5})$
SDSS J0151+0049	19.816	0.049	0.665 ± 0.002	0.604 ± 0.001
SDSS J0747 + 5055	18.923	0.111	1.089 ± 0.002	0.004 ± 0.001 0.737 ± 0.001
SDSS J0747+4448	10.323 19.417	0.066	0.924 ± 0.002	0.645 ± 0.001
SDSS J0757+4313	18.500	0.068	3.818 ± 0.009	0.040 ± 0.001 0.572 ± 0.001
SDSS J0707 + 4313 SDSS J0801 + 4727	19.911	0.103	0.499 ± 0.001	0.972 ± 0.001 0.951 ± 0.002
SDSS J0801+4727 SDSS J0821+3733	19.219	0.079	0.439 ± 0.001 0.551 ± 0.001	0.331 ± 0.002 0.743 ± 0.001
SDSS J0821 + 5735 SDSS J0830 + 5116	19.332	0.075	0.969 ± 0.002	0.743 ± 0.001 0.699 ± 0.001
SDSS J0837+4937	19.352 19.462	0.060	0.909 ± 0.002 0.669 ± 0.001	0.039 ± 0.001 0.473 ± 0.001
SDSS J0837+4357 SDSS J0840+5051	19.984	0.043	0.003 ± 0.001 0.357 ± 0.001	0.475 ± 0.001 0.699 ± 0.001
SDSS J0840+5051 SDSS J0841+5017	19.624	0.045 0.045	0.537 ± 0.001 0.648 ± 0.001	0.039 ± 0.001 0.939 ± 0.002
SDSS J0915 - 0055	18.518	0.040	1.219 ± 0.002	0.935 ± 0.002 0.925 ± 0.001
SDSS J0913-0033 SDSS J0941-0104	20.005	0.063	0.458 ± 0.001	0.568 ± 0.001
SDSS J0941 - 0104 SDSS J0944 - 0147	19.965	0.003 0.067	0.438 ± 0.001 0.478 ± 0.001	0.308 ± 0.001 0.785 ± 0.002
SDSS J1016-0208	19.303 19.797	0.007 0.072	0.478 ± 0.001 0.465 ± 0.001	0.785 ± 0.002 0.816 ± 0.002
SDSS J1010-0208 SDSS J1039-0014	19.345	0.072	0.403 ± 0.001 0.812 ± 0.001	0.810 ± 0.002 0.440 ± 0.001
SDSS J1039-0014 SDSS J1117-0133	18.896	0.034	2.397 ± 0.001	0.938 ± 0.001
SDSS J117=0133 SDSS J1159=0007	19.463	0.049	0.958 ± 0.002	0.966 ± 0.002
SDSS J1215+0047	19.403 19.544	0.049	0.358 ± 0.002 0.651 ± 0.001	0.300 ± 0.002 0.684 ± 0.001
SDSS J1213+0047 SDSS J1221-0220	18.942	0.055	0.031 ± 0.001 0.710 ± 0.001	0.084 ± 0.001 0.586 ± 0.001
SDSS J1221-0220 SDSS J1221+3806	19.942	0.033	0.470 ± 0.001	0.380 ± 0.001 0.838 ± 0.002
SDSS J1221 + 3800 SDSS J1234 - 0241	19.364 19.269	0.029	1.054 ± 0.002	0.002 ± 0.002 0.762 ± 0.002
SDSS J1234-0241 SDSS J1318-0104	19.209	0.050	0.687 ± 0.002	0.762 ± 0.002 0.761 ± 0.002
SDSS J1318 = 0104 SDSS J1337 + 3620	18.603	0.023	2.034 ± 0.002	0.960 ± 0.002
SDSS J1337+3020 SDSS J1344+3258	19.581	0.023 0.031	2.034 ± 0.003 0.524 ± 0.001	0.900 ± 0.001 0.746 ± 0.001
SDSS J1344 + 3238 SDSS J1345 - 0129	21.877	0.031 0.071	1.000 ± 0.003	0.000 ± 0.001
SDSS J1343 = 0129 SDSS J1349 + 3612	18.555	0.071 0.025	1.886 ± 0.003	0.000 ± 0.001 0.743 ± 0.001
SDSS J1349+3012 SDSS J1352+3216	18.555 19.514	0.023 0.024	0.579 ± 0.001	0.743 ± 0.001 0.949 ± 0.001
SDSS J1352+3210 SDSS J1452+3323	19.314 19.487	0.024 0.026	0.579 ± 0.001 0.623 ± 0.001	0.949 ± 0.001 0.836 ± 0.001
SDSS J1452+3525 SDSS J1503+3225	20.118	0.020	0.023 ± 0.001 0.769 ± 0.003	0.830 ± 0.001 0.625 ± 0.002
SDSS J1503+3225 SDSS J1522+2910	19.534	0.032	0.709 ± 0.003 0.890 ± 0.002	0.023 ± 0.002 0.579 ± 0.001
SDSS J1522+2910 SDSS J1537+0220	$19.534 \\ 19.682$	$0.040 \\ 0.111$	0.890 ± 0.002 0.386 ± 0.001	0.579 ± 0.001 0.694 ± 0.001
SDSS J1537+0220 SDSS J1541+1812	19.648	0.064	0.380 ± 0.001 0.759 ± 0.002	0.094 ± 0.001 0.755 ± 0.002
SDSS J1541+1812 SDSS J1542+1629	19.648 18.580	$0.064 \\ 0.054$	0.759 ± 0.002 0.726 ± 0.001	0.755 ± 0.002 0.786 ± 0.001
SDSSJ1342+1029	10.000	0.034	0.720 ± 0.001	0.780 ± 0.001

Literature Curation

- Collected and evaluated literature known to contain gravitational lens data.
- Characterized commonality of reported parameters across publications to inform a future data management strategy.
- Identified short list of 'easy' and 'hard' papers to use as an evaluation data set.
- Isolate why 'hard' papers are difficult to successfully parse.
 - Object naming variations
 - Domain specific glyphs
 - Target data interwoven with irrelevant data
 - Complex table formatting
 - Poorly formatted source documents.

System Name	Plate-MJD-Fiber (2)	z _L (3)	System Name (1)	$m_{I_{814}}$ (0 (2)
SDSS J015107.37+004909.0 SDSS J021214.80+002719.1 SDSS J074724.12+505537.5 SDSS J074734.75+444859.3	3606-55182-0679 4236-55479-0603 3677-55205-0551 3676-55186-0581	0.5171 0.5372 0.4384 0.4366	SDSS J0151+0049 SDSS J0747+5055 SDSS J0747+4448 SDSS J0757+4313 SDSS J0801+4727	19.417 18.500

Dropped precision in naming convention (same paper)

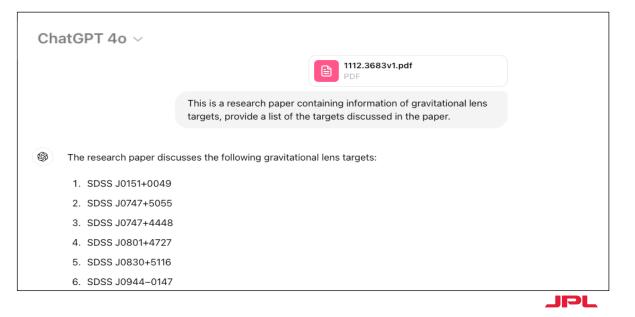
BELLS GRAD	e-A Stro	TABLI ONG LEN		DEL PA	RAMETH	RS
System Name (1)	${\theta_E}_{(2)}('')$	q_{SIE} (3)	P.A. (°) (4)	N_S (5)	m_{814} (6)	μ (7)
SDSS J0151+0049	0.676	0.752	111.0	1	22.51	8.71
SDSS J0747+5055	0.754	0.641	4.9	2	21.46	2.95
SDSS J0747+4448	0.610	0.723	147.1	1	23.77	39.72
SDSS J0801+4727	0.491	0.891	41.1	2	22.07	3.82
0D00 10000 - F110	1 1 40	0.005	107.0	0	01.00	- AG

Domain specific glyphs with references to in text descriptions

Name	RA	DEC	Selection	W1 - W2, W1	Gaia G	Date, Exp. Time	Outcome	
J0003 + 4555	0.96401	45.92215	D+WISE	0.37, 17.95	17.61, 18.97	12 Sep, 600s	quasar+star	
J0011 - 0845	2.83435	-8.76407	D+GMM/WISE	0.10, 17.89	20.31, 20.35	12 Sep, 1200s	lens , z=1.70	
J0028 + 0631	7.09369	6.53195	S+GMM/WISE	0.16, 16.86	18.95	12 Sep, 1200s	lens , z=1.06	
J0030 - 1525	7.56378	-15.41752	S+WISE	-0.09, 17.01	19.30	13 Sep, 1200s	quad lens, $z=3.36$	
J0123 - 0455	20.84084	-4.93266	$\rm S+GMM/WISE$	0.21,17.28	20.29	12 Sep, 2100 s	lens, z=1.38	

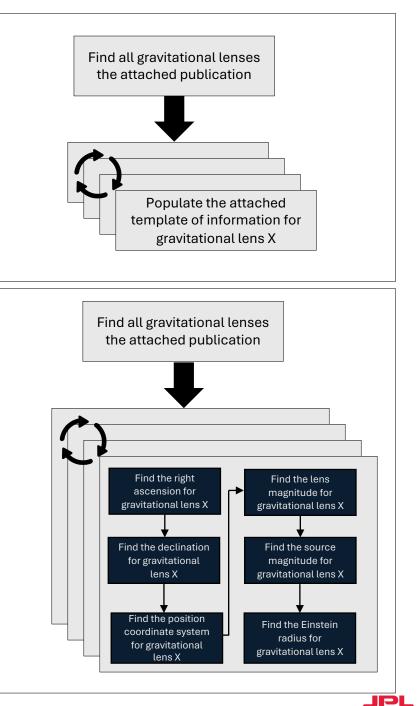
Data of interest interwoven with other data

name	b (")	PA _{SIE}	q_{SIE}	PAlight	q _{light}	χ^2_{gal}	χ^2_{images}	χ^2_{flux}	μ
J0011 - 0845	$0.96_{0.95}^{0.97}$	176_{174}^{177}	$0.70^{0.73}_{0.68}$	99 ¹³¹ 55	$0.86_{0.73}^{0.97}$	0.07	0.19	0.03	$5.0^{5.3}_{4.5}$
J0028 + 0631	$1.43^{1.44}_{1.42}$	55^{57}_{51}	$0.81_{0.79}^{0.83}$	58 ⁶² 58	$0.86_{0.84}^{0.88}$	0.07	0.19	0.02	$4.2^{4.4}_{4.1}$
$J0030 - 1525^{\dagger}$	$1.08^{1.15}_{1.05}$	170^{182}_{165}	$0.82^{0.95}_{0.33}$	55 ⁵⁷ 51	$0.81_{0.79}^{0.83}$	0.97	13.0	13.1	71^{88}_{29}


Complex table formatting

Model Selection & Deployment

- Deployed local models using Private GPT.
- Deployed on high performance computing running A100 GPUs.
- Locally deployed models
 - Llama 2
 - Llama 3 (8B / 70B)
 - Mixtral 8x22b
- Purchased access to commercial models
- Ran using GUI terminals
 - Manual interaction
 - Variable context length
- Commercial API Models
 - GPT-4o (OpenAl)
 - Claude3 Opus (Anthropic)
 - Claude3 Opus (Perplexity)


O PRIVATE GPT							
Mode Query Files Search Files LLM Chat (no context from files) Upload File(s) Ingested Files File name BELLS.pdf De-select selected file Selected for Query or Deletion All files Delete selected file	 LLM: oliama Model: Ilama3:70b-instruct This is an academic paper reporting strong-lensing observations. How many observations are being reported, and what types or categories of targets do they represent? Provide a succinct response to a subject matter expert. The paper reports on the initial catalog of 45 spectroscopically selected strong galaxy-galaxy lens candidates from the BOSS Emission-Line Lens Survey (BELLS). Of these, 44 were successfully observed with HST/ACS imaging, resulting in 25 confirmed strong gravitational lenses and an additional Il possible lenses. The targets represent a sample of elliptical/bulge-dominated galaxies at redshift ~0.5. Sources: BELLS.pdf (page 1) BELLS.pdf (page 20) BELLS.pdf (page 21) BELLS.pdf (page 3) 						
∆ Delete ALL files	Clear						
	Type a message Submit						

Prompt Engineering

- Three step prompting approach
 - 1. Parse gravitational lenses contained in the provided paper
 - 2. Parse information about each lens contained in the paper
 - 3. Query published information missing from storage template
- Multiple prompting strategies
 - Request parsing of all template fields for a given gravitational lens in a single request (one shot)
 - Request parameters sequentially for a given gravitational lens (tree)

Curated Data Management

Follow model established by IPAC for exoplanets – Common values tracked by source

NASA EXOPLANET ARCHIVE A SERVICE OF NASA EXOPLANET SCIENCE INSTITUTE

Source	Cadieux et al. 2024 📌 🗞	Kokori et al. 2023 ★ 🗞	Lillo-Box et al. 2020 📩 🗞	Ment et al. 2019 📩 🗞
7_{еq} (К)	422±7		708.9 ^{+8.0} -7.8	438±9
Ь	0.090 ^{+0.090} -0.060			
<i>S</i> (S⊕)	5.3±0.4			6.16±0.37
<i>M_p</i> (M⊕)	1.91±0.06		1.76 ^{+0.17} _{-0.16}	1.81±0.39
М _р (М _{Јир})	0.00601±0.00019		0.00554 ^{+0.00053} -0.00050	0.00569±0.00123
e	<0.050		<0.274	<0.31
<i>i</i> (deg)	89.80 ^{+0.14} -0.19	89.92 ^{+0.06} -0.09	89.913 ^{+0.046} -0.049	89.92 ^{+0.06} -0.09
P (days)	3.777940±0.000002	3.7779329±0.0000028	3.77792±0.00003	3.777931±0.000003
ρ (g/cm ³)	5.1±0.4		$6.07 \stackrel{+0.81}{_{-0.74}}$	4.7±1.1
R _p (R⊕)	1.272±0.026		1.169 ^{+0.037} 0.038	1.282±0.024
R p (R _{Jup})	0.1135±0.0023		0.1043 ^{+0.0033} -0.0034	0.1144±0.0021
K (m/s)	2.42±0.07		2.22±0.20	2.35±0.49
a (au)	0.0270±0.0005		0.02734±0.00054	0.02675±0.00070
δ (%)	0.290±0.009		0.252 ^{+0.016} -0.015	
7₁₄ (hours)	1.13±0.02		$1.100 \stackrel{+0.025}{_{-0.024}}$	
7 c (days)	2458389.2939±0.0002	2458226.843969±0.000018	2458389.29383 ^{+0.00081} -0.00082	2458226.843169±0.000026
a/R _*		26.57±0.05	27.53 ^{+0.62} _{-0.61}	26.57±0.05
R _p /R _*		0.05486±0.00013		0.05486±0.00013
$M_p \sin i$ (M $_{\oplus}$)			1.71±0.18	
M_p sin i (M _{Jup})			0.00538±0.00057	

Tracked Parameters

Parameter Sources

System Level Considerations

- Must distill prompts to clear tasks which you want done at scale
 - Direct parsing of information easier than summarization/distillation of key points.
- Automatable APIs can be prohibitively expensive
 - Terminal interaction inexpensive, but manual
 - API keys allow for at-scale automation, for order of magnitude cost increase
- Local models require expensive hardware (A100 / H100 GPUs)
- Systems likely be very bespoke, multiple models each doing specific pieces
 - Rare that one model handles all the parsing steps required well.
 - Likely to be a cobbled together system of models which performs best.
- Prompt engineering is critical, and very model dependent
- Validation difficult and a persistent issue. Systems not trustworthy once validated.
- Ensemble / consensus architectures could provide higher confidence.

LLM Model Considerations

- Larger context windows don't necessarily improve performance
 - Individual papers mostly fit in the modern context window sizes
- Page search (RAG) summarization not necessary for individual papers
 - Increases the risk of missing key information contained in the paper
- Science users should not be training their own LLM models.
- Hallucinations remain common and difficult to identify in an automated fashion.
- PDF file encoding not standard in source documents (papers)
 - Creates subtle failures in parsing
- No unified language in science, nuanced domain terminology difficult to parse.
- Should not be used for analysis.
 - Doesn't understand your data, simply performing complex pattern matching.
 - Do not rely on LLMs for math.
- Repeatability questionable
 - Some models give different answers for the same prompt when asked again.