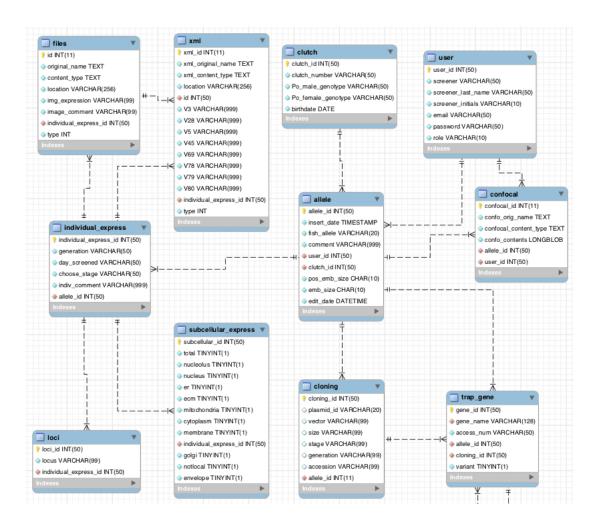


Matthew J. Graham (Caltech)

Data models



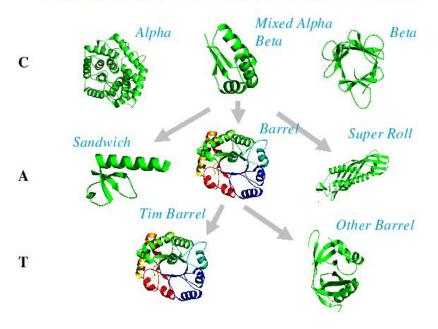
data models

- A collection of concepts describing how structured data is represented and accessed
- Within a data model, the **schema** is a set of descriptions of a particular collection of data
- The schema is stored in a **data dictionary** and can be represented in SQL, XML, RDF, etc.
- In semantics a data model is equivalent to an ontology "a formal, explicit specification of a shared conceptualisation"

data model example

flat (file) model

- Data files that contain records with no structural relationships
- Additional information is required to interpret these files such as the file format properties
- Hollerith 1889 patent "Art of Compiling Statistics" describes how every US resident can be represented by a string of 80 characters and numbers
- Examples: delimiter-separated data (CSV, TSV), HTML table

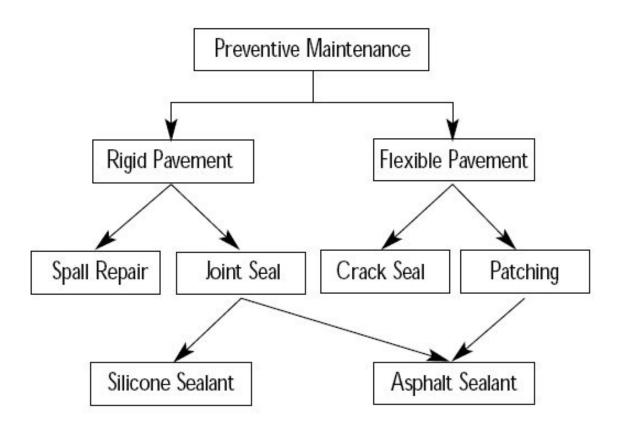

hierarchical model

- Data is organized in a tree structure
- Levels consist of records of the same type same set of field values with a sort field to ensure a particular order
- 1:N (parent-child) relationship between two record types: child may only have one parent but a parent can have many children
- Popular in the late 1960s/1970s with IBM's Information Management System (IMS)
- Structure of XML documents

hierarchical example

CATH database of protein structures in the Protein Data Bank: Levels: Class, Architecture, Topology, Homologous Superfamily, Sequence Family

Classification of Protein Structure: CATH

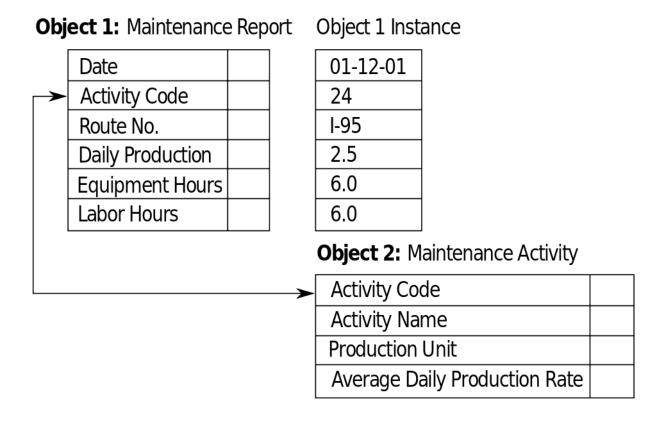


network model

- Data is organized as sets and records
- A set has an owner, a name and one-or-more members
- A record may be an owner in any numbers of sets and a member in any number of sets
- Allows modelling of many-to-many relationships
- Formally defined by the Conference on Data Systems Languages (CODASYL) specification in 1971

network example

Network Model


object-oriented model

- Adds database functionality to object-oriented languages by allowing persistent storage of programming objects
- Avoids overhead of converting information from database representation to application representation (impedance mismatch)
- Applications require less code and use more natural data modelling
- Good for complex data and relationships between data

object-oriented example

Object-Oriented Model

relational model

- Data is organized as **relations**, **attributes** and **domains**
- A **relation** is a table with columns (attributes) and rows (tuples)
- The **domain** is the set of values that the attributes are allowed to take
- Within the relation, each row is unique, the column order is immaterial and each row contains a single value for each of its attributes
- Proposed by E. F. Codd in 1969/70

relational example

Relational Model

Activity Code	Activity Name
23	Patching
24	Overlay
25	Crack Sealing

Key = 24

Activity Code	Date	Route No.
24	01/12/01	I-95
24	02/08/01	I-66

Date	Activity Code	Route No.
01/12/01	24	I-95
01/15/01	23	I-495
02/08/01	24	I-66

associative model

- Data is modelled as entities having a discrete independent existence and associations
- It is organised as items an identifier, name and type and links an identifier, source, verb and target

Example:

Flight BA1234 arrived at LAX on 10-Apr-12 at 1:25pm

Items: Flight BA1234, LAX, 10-Apr-12, 1:25pm, arrived at, on, at

Links: (((Flight BA1234 arrived at LAX) on 10-Apr-12) at 1:25pm)

other models

semi-structured model

-- graph-based for information that cannot be constrained by schema, e.g., Web

object-relational

-- adds object capabilities to relational systems, e.g., GIS data

