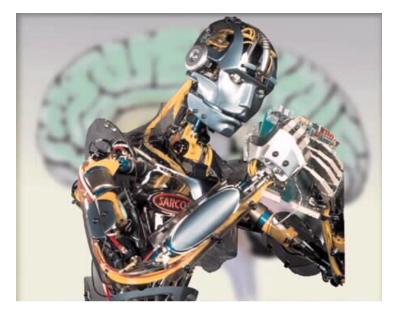


Ciro Donalek (Caltech)

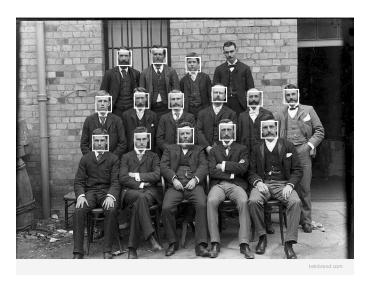
Introduction to Machine Learning

Objective

- What is Machine Learning (ML) and why we need it
- Types of learning
- Data Mining
- Knowledge Discovery in Databases


ML: historic definition

Machine Learning relates with the study, design and development of the algorithms that give computers the capability to learn without being explicitly programmed (Arthur Samuel – 1959).


ML: a more formal definition

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E" (T. Mitchell, '98).
- Example: SPAM filter
 - T: recognize spam
 - E: user flagging mail as spam
 - P: percentage of spam correctly classified as such

Applications

Face detection / automatic tagging

Advertisement, product engagement

Medical Diagnosis

Science

Why we need a ML approach

- We are in an era dominated by large, multi-dimensional and heterogeneous datasets (most of which will never be seen by humans).
- Big Data is often described using five Vs:
 - Volume: large amount of data;
 - Velocity: data generated and moved around at great speed;
 - 3. Variety: different sources;

Why we need a ML approach

- We are in an era dominated by large, multi-dimensional and heterogeneous datasets (most of which will never be seen by humans).
- Big Data is often described using five Vs:
 - **4.** Veracity: quality and accuracy are less controllable;
 - **5.** Value: extract knowledge from data!

When a ML approach can be applied?

- We need to extract knowledge
- We know that a pattern exists
 - if there is no pattern, no harm done!
- We cannot pin it down mathematically
 - If we can, may be just not the recommended technique...
- We have (lots of) data
 - data driven approach

Types of Learning

Different types of Learning:

- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning
- Other types:
 - Reinforcement Learning
 - Transduction
 - Learning to Learn

Quick definitions

- Supervised Learning: for some of the samples, the desired output is known and it is used during the training process.
- Unsupervised Learning: the model is not provided with the correct results during the training; can be used to cluster the input data in classes on the basis of their statistical properties only.
- Semi-Supervised Learning: combines both labeled and unlabeled examples to generate an appropriate function or classifier.

Algorithms

- There are many good tools out there, but you need to choose the right ones for your needs.
- No "one size fits all" solution.

Supervised Algorithms

Neural Networks (MLP) Boltzmann Machines RBM

Decision Trees
Nearest Neighbor
Naive Bayes Classifiers
Bayesian Networks
Gaussian Processes
Regression

...

Unsupervised Algorithms

K-Means

Self-Organizing Maps

RDF

Fuzzy Clustering

CURE

ROCK

Vector Quantization

Probabilistic Principal

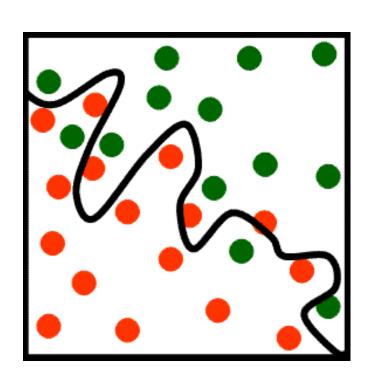
Surfaces

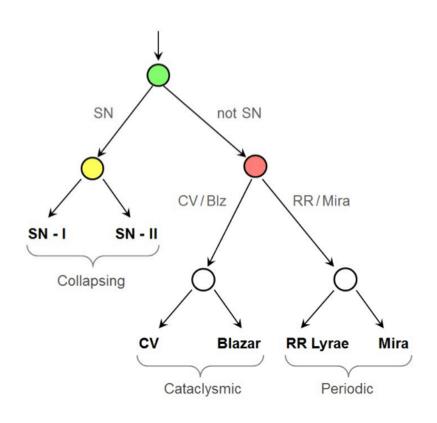
• • •

Choose the right approach

- What is being learned?
- How data is generated?
- Is there any missing / incomplete data?
- How the data is presented (one at a time, all in once)?
- What is the goal?

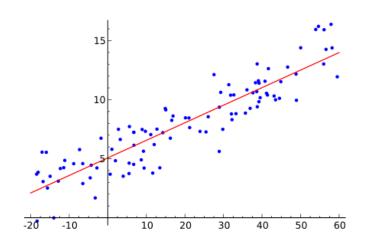
Data Mining

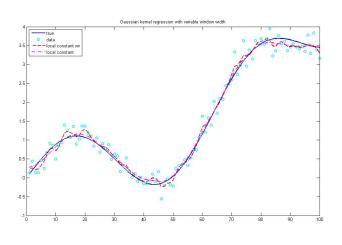

- Machine Learning and Data Mining are often confused.
- Data Mining can be defined as the process of extracting ("mining") knowledge and interesting data patterns hidden in (large) datasets, often using Machine Learning techniques.
- Interesting = "non-trivial, previously unknown and potentially useful".
- Data Mining is the analysis step of Knowledge Discovery in Databases (KDD).


Data Mining Tasks

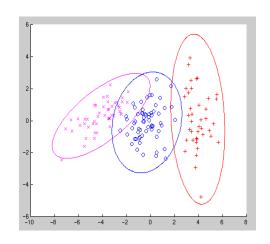
- Classification
- Regression
- Forecasting
- Clustering
- Search for Outliers (Deviation Analysis)
- Path Analysis (Sequence Analysis)
- Association (Market Basket Analysis)

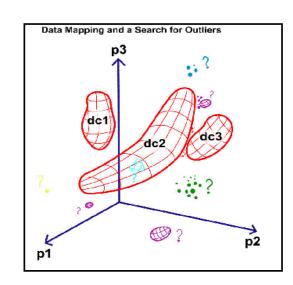
DM tasks: Classification


- Assign samples into categories (classes) based on a predictable attribute.
- The goal of classification is to accurately predict the target class for each case in the data set.



DM tasks: Regression


- Compute the new values for a dependent variable based on the values of one or more measured attributes.
- Examples:
 - predict wind velocities based on temperature, air pressure and humidity;
 - predict coupon redemption rate based on the face value, distribution method and distribution volume



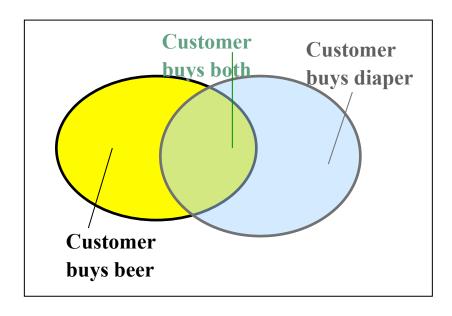
DM tasks: clustering

- Clustering
 - partitioning of a data set into subsets (clusters) so that data in each subset ideally share some common characteristics.

- Deviation Analysis (search for outliers)
 - anomalies;
 - peculiar objects.

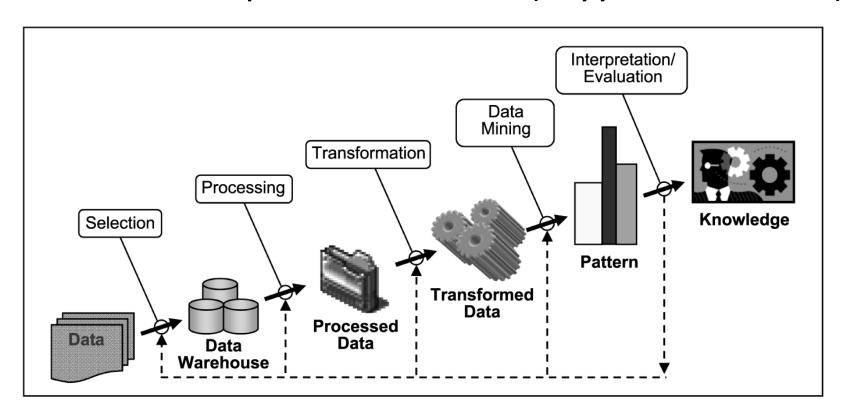
DM tasks: Path Analysis

- Path Analysis (or Sequence Analysis) is used to find patterns in discrete series.
- Looking for patterns in which one event leads to a later event.
- In the sequence analysis also the order is important.
 - buying item A before buying item B is different from buying item B before A.

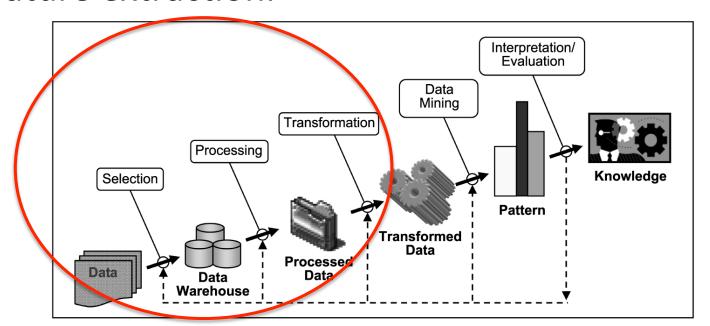

Web path analysis: mine log file, excellent way to get knowledge about how visitors use a site.

Generating set of rules that can predict which users are likely to click on a particular link or make a purchase.

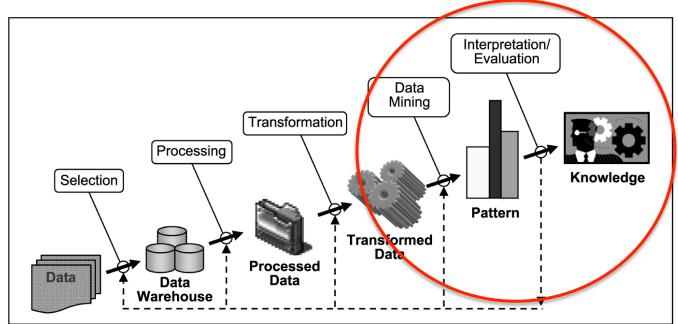
Eg, Google AdSense/Analytics


DM tasks: Association

- Association: finding inherent regularities in data.
- Looking for frequent patterns (eg. "What items are frequently purchased together?", cross-marketing).
- The order is not important:
 - buying item A before buying item B is no different of buying item B before A (all the items are equal and independent).


Knowledge Discovery in Databases

 "KDD is the non trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data" (Fayyad et al, 1996).


KDD steps: pre-processing

- (1) Creating the data set: data integration (i.e., merging data from different sources), a priori knowledge, etc.
- (2) Data cleaning: noise removal, handling missing data, data cleaning, put the data in the right format.
- 3 Data reduction and transformation: feature selection, feature extraction.

KDD steps: mining and evaluation

- 4 Data mining: choose the right task, choose the machine learning model, perform the analysis.
- (5) Interpretation and Evaluation: evaluate and interpret the discovered patterns.
- 6 Use the knowledge!

Summary

- Introduction to Machine Learning
- Different types of Learning
- Data Mining
- Knowledge Discovery in Databases