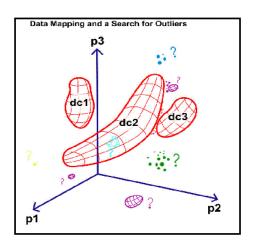


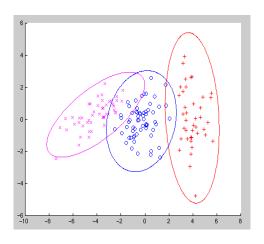
Ciro Donalek (Caltech)

Clustering

What is Clustering?

- Unsupervised Learning
- Cluster hypothesis: objects in the same cluster behave similarly with respect to relevance to information needs.
 - points in the same cluster are likely to be of the same type.
 - finding natural groupings among objects.





Unsupervised Algorithms

K-Means

Self-Organizing Maps

RDF

Fuzzy Clustering

CURE

ROCK

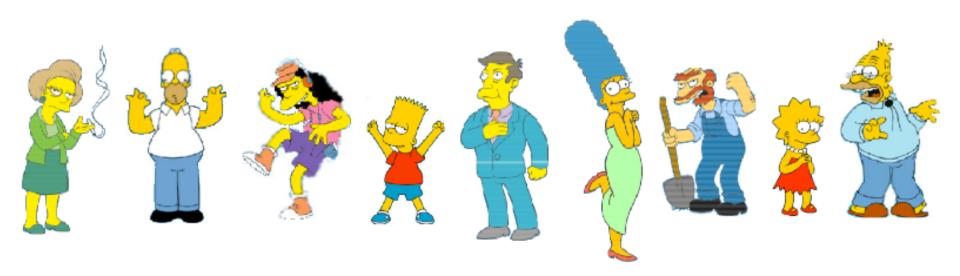
Vector Quantization

Probabilistic Principal

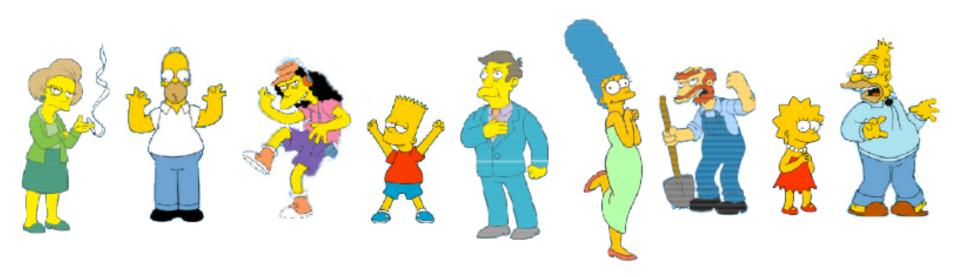
Surfaces

...

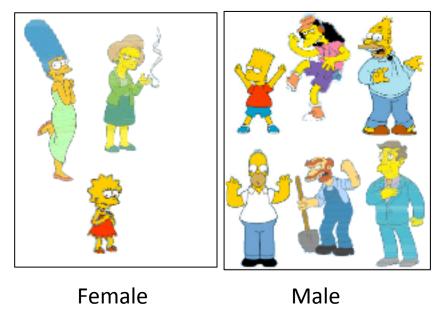
What is a natural grouping?



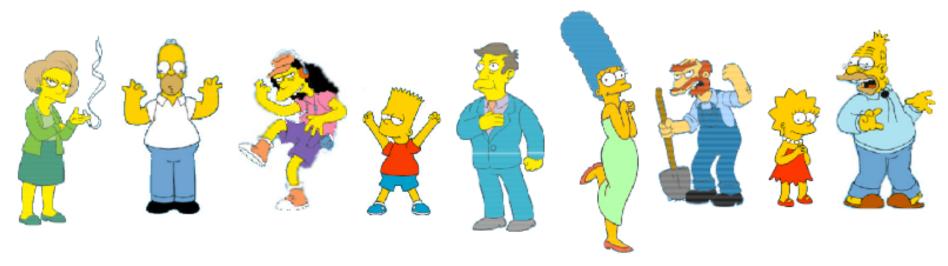
Clustering is subjective!



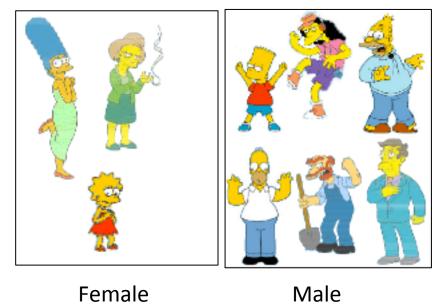
GENDER



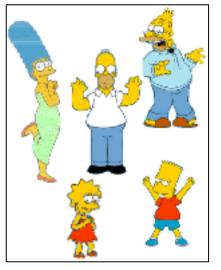
Clustering is subjective!



GENDER



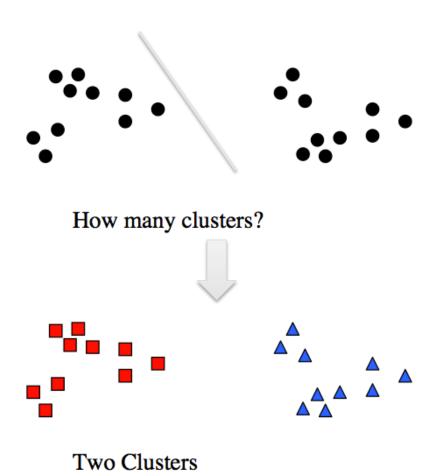
ROLE

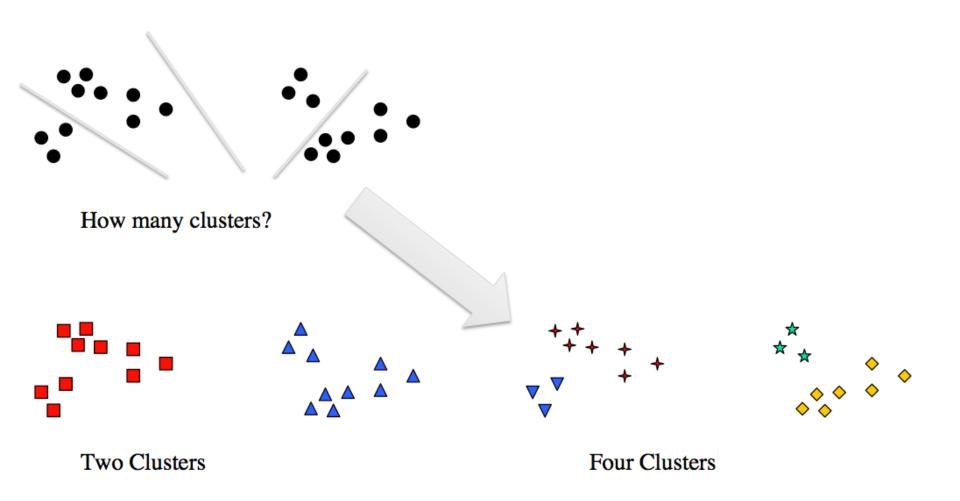


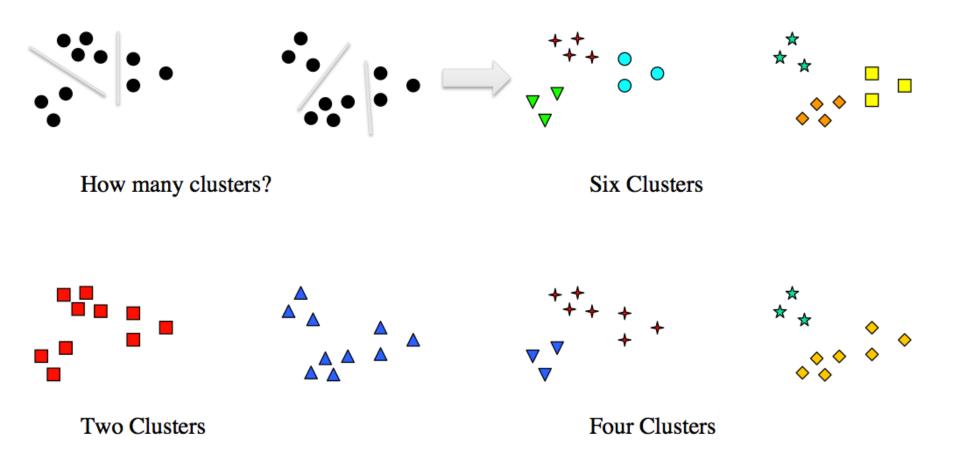
Simpson's Family

School Employees

How many clusters?

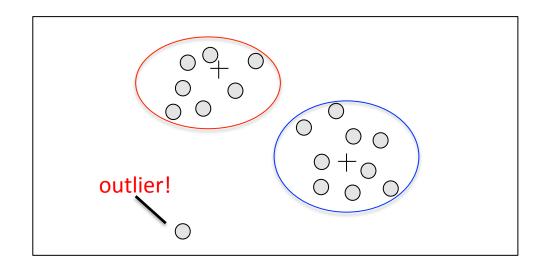


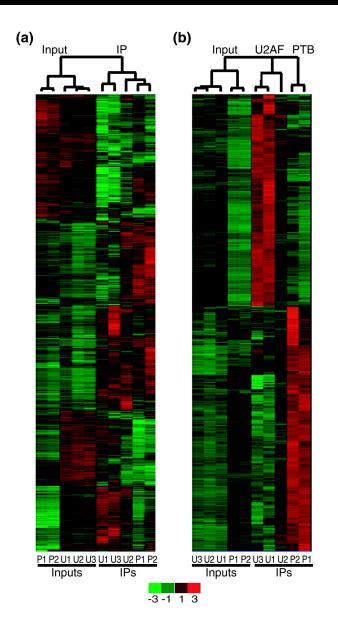




Why clustering

- Organizing data into clusters shows internal structure of the data.
 - e.g., gene clustering
- Use partitions to achieve a goal
 - e.g., market segmentation
- Outlier analysis, image analysis, etc.





Formal statement

Given a set of feature vectors D:

```
D = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]
a desired number of cluster k,
an objective function q, we want to compute an
assignment
f: D \rightarrow \{1,...,k\} that minimize (maximize) g
```

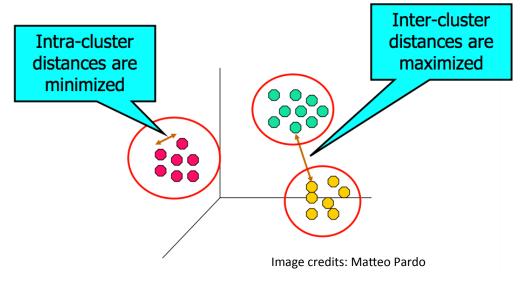
 The objective function is often defined in terms of similarity or distance between samples or clusters.

Evaluation of Clustering

- Internal criterion
 - based on intra-cluster and inter-cluster similarities.
- External criterion
 - direct evaluation: may be expensive
 - benchmark or "gold standard"

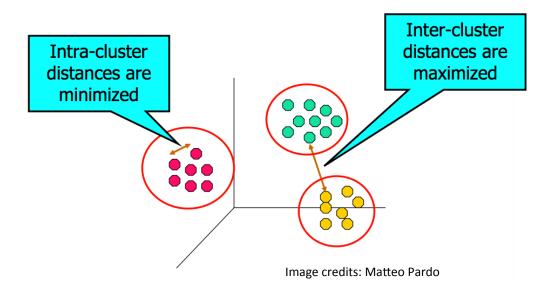
Internal Measures

- A good clustering is one where:
 - the intra-cluster distance is minimized: defined as the sum of distances between objects in the same clusters;
 - the inter-cluster distance is maximized: defined as the distances between different clusters.



Internal Measures

- Good scores do not necessarily translate in good effectiveness in an application.
- Can be biased towards algorithms that use the same cluster models.
- Useful to get insights.



External Measures

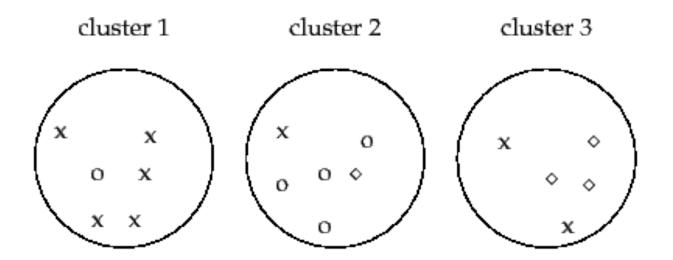
- Use of a labeled sub-sample as gold standard.
- Evaluate how well the clustering matches the classes.
- Criteria:
 - purity;
 - normalized mutual information;
 - rand index;
 - F measure;
 - Jaccard measures.

Purity

• Purity:

- assign each cluster to the class which is most frequent;
- measure the accuracy by counting the number of correctly assigned samples per class.
- problem: purity=1 if each cluster contain just one sample!

Purity



▶ Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority class and number of members of the majority class for the three clusters are: x, 5 (cluster 1); o, 4 (cluster 2); and \diamond , 3 (cluster 3). Purity is $(1/17) \times (5+4+3) \approx 0.71$.

Ref.: Introduction to Information Retrieval Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze 2008, Cambridge University Press

NMI

Normalized Mutual Information (NMI)

- measures the amount of information by which our knowledge about the classes increases when we are told what the clusters are.
- 0 if the clustering is random with respect to the class membership.
- maximum reached for a cluster that perfectly recreates the class, but also for a high number of clusters.

Rand Index and F measure

• The *Rand index* () measures the percentage of decisions that are correct (accuracy).

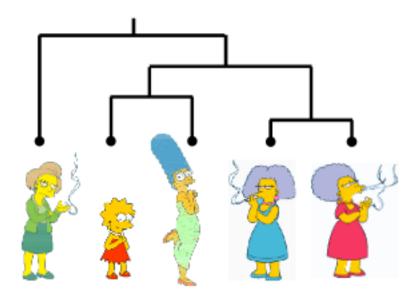
$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

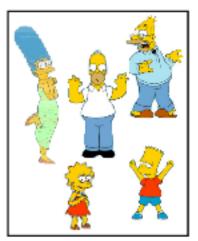
- Gives equal weight to false positives and false negatives.
- F measure: introduce weights.
 - e.g., penalizes false negatives, selecting beta > 1

$$P = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$
 $R = rac{ ext{TP}}{ ext{TP} + ext{FN}}$ $F_{eta} = rac{(eta^2 + 1)PR}{eta^2 P + R}$

Types of Clustering

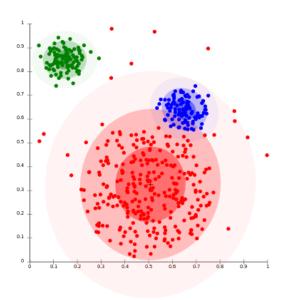
- HIERARCHICAL: finds successive clusters using previously established clusters.
- PARTITIONAL: divide data objects in non overlapping subsets.

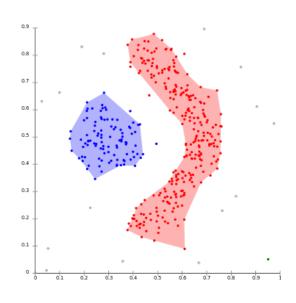




Types of Clustering

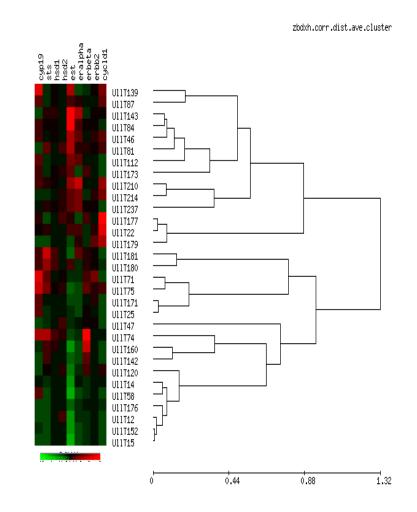
- MODEL BASED: assumes that the data were generated by a model and tries to recover the original model from the data (e.g., EM).
- DENSITY BASES: clusters are defined as areas of higher density. Objects in these sparse areas are usually considered to be noise and border points (e.g., DBSCAN).





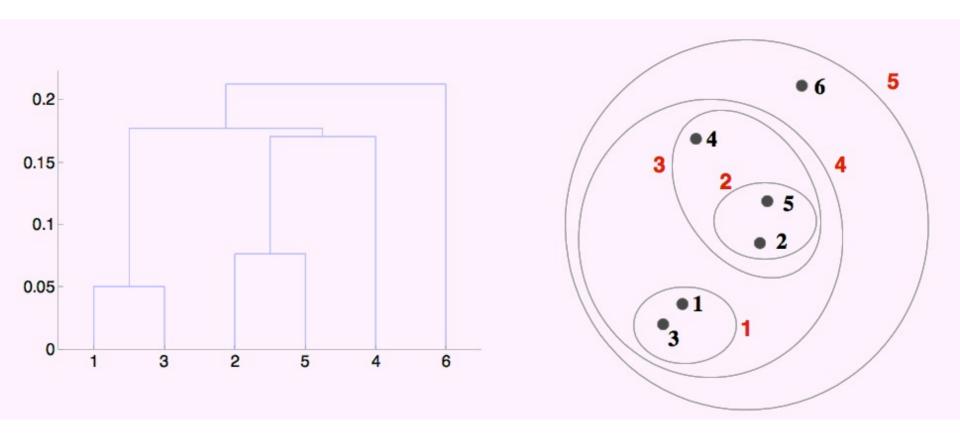
Hierarchical Clustering

- Find subsequent clusters using previously established ones.
- Cannot test all possible trees.
 - Agglomerative (bottom-up): we start with each element in a separate cluster and merge them accordingly to a given property.
- Divisive (top-down): start
 with all the points in the
 same clusters and then divide
 them.



Dendogram

• Hierarchical clusters are visualized as a dendogram.



Hierarchical Clustering: pro and cons

Pro

- no need to specify the number of clusters;
- intuitive.

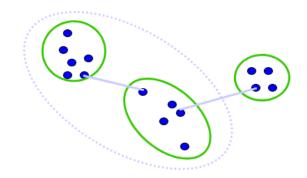
Cons

- scalability [$O(n^2)$, n=# of samples];
- local optima;
- subjective.

Distance between clusters

Single link

- smallest distance between an element in one cluster and an element in the other $dis(K_i, K_i) = min(t_{ip}, t_{iq})$



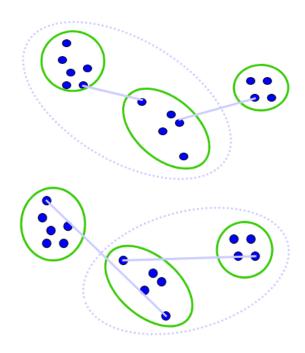
Distance between clusters

Single link

smallest distance between an element in one cluster and an element in the other dis(K_i, K_i) = min(t_{ip}, t_{iq})

Complete link

largest distance between an element in one cluster and an element in the other dis(K_i, K_i) = max(t_{ip}, t_{jq})



Distance between clusters

Single link

smallest distance between an element in one cluster and an element in the other dis(K_i, K_i) = min(t_{ip}, t_{jq})

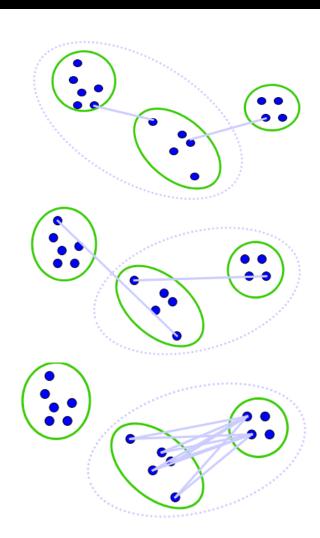
Complete link

largest distance between an element in one cluster and an element in the other dis(K_i, K_j) = max(t_{ip}, t_{iq})

Average

- average distance between an element in one cluster and an element in the other
- i.e., $dis(K_i, K_i) = avg(t_{ip}, t_{iq})$

Centroid, Medoid



Ref: Data Mining: Concepts and Techniques, J. Han, M. Kamber Image credit: Henry Lin

Similarity Measures

- Determine the similarity between two clusters and the shape of the clusters.
- Based on distance metrics.
- Distance metric: defines a distance between elements of a set:
 - non negativity: $dist(x,y) \ge 0$
 - symmetry: dist(x,y) = dist(y,x)
 - self-similarity: dist(x,y)=0 \Leftrightarrow x=y
 - triangular inequality: $dist(x,z) \le dist(x,y) + dist(y,z)$

Common Distances

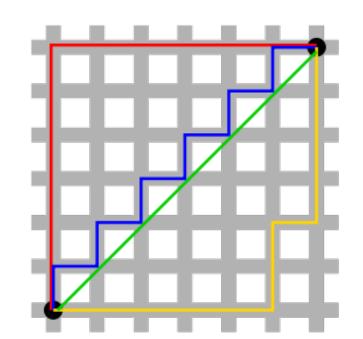
- Euclidian Distances
 - commonly used;
 - sphere shaped clusters;
 - Squared Euclidean Distance is not a metric as it does not satisfy the triangle inequality, however it is frequently used in optimization problems.

Names	Formula
Euclidean distance	$ a - b _2 = \sqrt{\sum_i (a_i - b_i)^2}$
	$ a - b _2^2 = \sum_i (a_i - b_i)^2$
Manhattan distance	$ a - b _1 = \sum_i a_i - b_i $
maximum distance	$ a - b _{\infty} = \max_{i} a_i - b_i $
Mahalanobis distance	$\sqrt{(a-b)^{ op}S^{-1}(a-b)}$ where S is the covariance matrix
cosine similarity	$\frac{a \cdot b}{\ a\ \ b\ }$

Common Distances

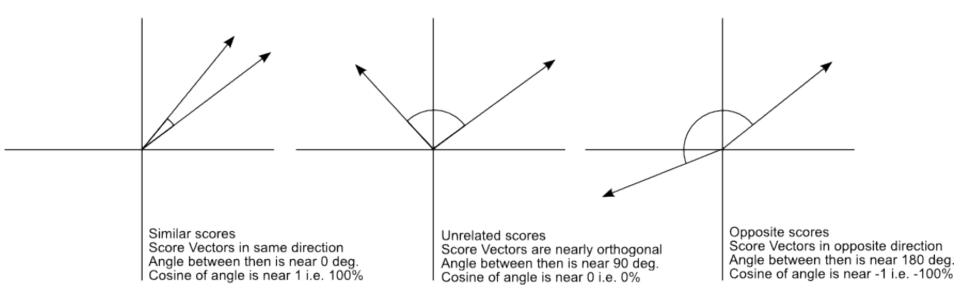
- Taxicab distance (Manhattan distance)
 - distance between two points is the sum of the absolute differences of their Cartesian coordinates;
 - "diamond" shaped clusters;

Names	Formula
Euclidean distance	$ a - b _2 = \sqrt{\sum_i (a_i - b_i)^2}$
squared Euclidean distance	$ a - b _2^2 = \sum_i (a_i - b_i)^2$
Manhattan distance	$ a - b _1 = \sum_i a_i - b_i $
maximum distance	$ a - b _{\infty} = \max_{i} a_i - b_i $
Mahalanobis distance	$\sqrt{(a-b)^{ op}S^{-1}(a-b)}$ where S is the covariance matrix
cosine similarity	$\frac{a \cdot b}{\ a\ \ b\ }$



Common Distances

- Mahalanobis Distance
 - measure of the distance between a point P and a distribution D.
- Cosine Similiarity
 - commonly used in information retrieval;
 - e.g., in text mining gives a useful measure of how similar two documents are likely to be in terms of their subject matter.



Partitional Clustering

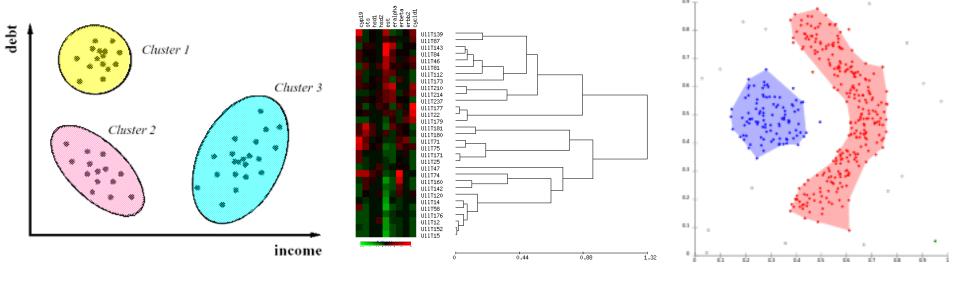
- Flat clustering.
- Need to specify or compute k.
- Each instance is placed in one of the clusters.
- Hard and Soft clustering.

Hard and Soft Clustering

- Hard clustering
 - each sample is member of one cluster exactly.
 - e.g., k-means
- Soft clustering
 - each sample has a degree of membership for each cluster.
 - e.g., Expectation-Maximization (EM)
- Exhaustive vs Non-exhaustive clustering

Summary

- Clustering
 - model
 - metric
 - objective function
 - hard or soft



zbdxh.corr.dist.ave.cluster