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Abstract

The basic workings of inflationary models are summarizeah@with the arguments that
strongly suggest that our universe is the product of inftaticdescribe the quantum origin
of density perturbations, giving a heuristic derivationted scale invariance of the spectrum
and the leading corrections to scale invariance. The méstnarihat lead to eternal inflation
in both new and chaotic models are described. Although tfieitin of pocket universes
produced by eternal inflation are unobservable, it is arghatleternal inflation has real
consequences in terms of the way that predictions are ésttdcom theoretical models.
Although inflation is generically eternal into the futureisi not eternal into the past: it can
be proven under reasonable assumptions that the inflagigrenust be incomplete in past
directions, so some physics other than inflation is needddgoribe the past boundary of the
inflating region. The ambiguities in defining probabilitiaseternally inflating spacetimes
are reviewed, with emphasis on the youngness paradox thaltsdrom a synchronous
gauge regularization technique.

11 Introduction

I will begin by summarizing the basics of inflation, includia discussion of how
inflation works, and why many of us believe that our univerkseost certainly evolved
through some form of inflation. This material is mostly notwnelthough the observational
evidence in support of inflation has recently become muanger. Since observations of
the cosmic microwave background (CMB) power spectrum haeime so important, |
will elaborate a bit on how it is determined by inflationaryaets. Then | will move on to
discuss eternal inflation, showing how once inflation statrtgenerically continues forever,
creating an infinite number of “pocket” universes. If inftatiis eternal into the future, it
is natural to ask if it can also be eternal into the past. | dé$cribe a theorem by Borde,
Vilenkin, and me (Borde, Guth, & Vilenkin 2003), which showsder mild assumptions
that inflation cannot be eternal into the past, and thus sawephysics will be necessary to
explain the ultimate origin of the universe.

1.2 How Does Inflation Work?

The key property of the laws of physics that makes inflatiossfale is the existence
of states with negative pressure. The effects of negatiesspire can be seen clearly in the
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Friedmann equations,

at) = —%G(p+3p)a (1.1a)
81 k
2 = _ _——
Hs = 3Gp 2 (1.1b)
and
p = —=3H(p+p), (1.1¢)
where
a
H_é' (1.2)

Herep is the energy density is the pressure; is Newton’s constant, an overdot denotes
a derivative with respect to the timeand throughout this paper | will use units for which
h=c=1. The metric is given by the Robertson-Walker form,

dr?
— kr2

wherek is a constant that, by rescaliagcan always be taken to be 0rl.

Equation (1.1a) clearly shows that a positive pressureritonés to the decceleration
of the universe, but a negative pressure can cause acaaberdhus, a negative pressure
produces a repulsive form of gravity.

Furthermore, the physics of scalar fields makes it easy tstoaet states of negative
pressure, since the energy-momentum tensor of a scalapfidlis given by

(1.3)

3

ds = —dt? +a(t) { 1 +r2(d92+sir129d¢2)}

TH =91 $0" ¢ =g [30200 6 +V(9)] (1.4)

wheregH” is the metric, with signature-(,1,1,1), andV(¢) is the potential energy density.
The energy density and pressure are then given by

p o= TO=5F5VIOHV(), 15
3

P = 3D Ti=3-§(Vie)-V(9). (1.6)
i=1

Thus, any state that is dominated by the potential energysoétar field will have negative
pressure.

Alternatively, one can show that any state that has an ermEngsity that cannot be easily
lowered must have a negative pressure. Consider, for examptate for which the energy
density is approximately equal to a constant vadueThen, if a region filled with this state
of matter expanded by an amoui¥t, its energy would have to increase by

dU = psdV. (1.7)

This energy must be supplied by whatever force is causingxpansion, which means that
the force must be pulling against a negative pressure. Thie dane by the force is given

by
dW=-pdVv, (1.8)
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whereps is the pressure inside the expanding region. Equating thk with the change in
energy, one finds

Pt =—pt , (1.9)

which is exactly what Equations (1.5) and (1.6) imply fottesain which the energy density
is dominated by the potential energy of a scalar field. [Omedzzive the same result from
Eq. (1.1c), by considering the case for whjth 0.]

In most inflationary models the energy densitys approximately constant, leading to
exponential expansion of the scale factor. By insertingdfiqu (1.9) into (1.1a), one obtains
a second-order equation faft) for which the late-time asymptotic behavior is given by

at) < ex', wherex=\/8§6pf . (1.10)

In the original version of the inflationary theory (Guth 198the state that drove the
inflation involved a scalar field in a local (but not global)mmum of its potential energy
function. A similar proposal was advanced slightly earbgr Starobinsky (1979, 1980)
as an (unsuccessful) attempt to solve the initial singtylgnioblem, using curved space
quantum field theory corrections to the energy-momentursaieto generate the negative
pressure. The scalar field state employed in the originaieerof inflation is called false
vacuum since the state temporarily acts as if it were the state wé$b possible energy
density. Classically this state would be completely statdeause there would be no energy
available to allow the scalar field to cross the potentiatgynbarrier that separates it from
states of lower energy. Quantum mechanically, howevestdite would decay by tunneling
(Coleman 1977; Callan & Coleman 1977; Coleman & De Luccia0)98nitially it was
hoped that this tunneling process could successfully efiation, but it was soon found
that the randomness of the bubble formation when the falsaura decayed would produce
disastrously large inhomogeneities. Early work on thisbpgm by Guth and Weinberg
was summarized in Guth (1981), and described more fully ith@uWeinberg (1983).
Hawking, Moss, & Stewart (1982) reached similar conclusifnom a different point of
view.

This “graceful exit” problem was solved by the invention loé thew inflationary universe
model by Linde (1982a) and by Albrecht & Steinhardt (1982kwNnflation achieved all
the successes that had been hoped for in the context of thealrversion. In this theory
inflation is driven by a scalar field perched on a plateau ofibtential energy diagram, as
shown in Figure 1.1. Such a scalar field is generically calteéhflaton If the plateau is flat
enough, such a state can be stable enough for successftibmfl&oon afterwards, Linde
(1983a, 1983b) showed that the inflaton potential need nat Biher a local minimum or
a gentle plateau: in the scenario he dubblealotic inflation the inflaton potential can be as
simple as

V()= 5P, (1.11)

provided thaty begins at a large enough value so that inflation can occurrataites. A
graph of this potential energy function is shown as Figuge The evolution of the scalar
field in a Robertson-Walker universe is described by the gdmelativistic version of the
Klein-Gordon equation,
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Fig. 1.1. Generic form of the potential for the new inflatipnacenario.
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Fig. 1.2. Generic form of the potential for the chaotic inflatiry scenario.
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¢+3H¢—a2—(t)v2¢:—‘;—¢. (1.12)

For late times th&/2¢ term becomes negligible, and the evolution of the scalad febny
point in space is similar to the motion of a point mass eva\mthe potentiaV (x) in the
presence of a damping force described by tHe)3erm.

For simplicity of language, | will stretch the meaning of tplerase “false vacuum” to
include all of these cases; that is, | will use the phrase twtieany state with a large
negative pressure.

Many versions of inflation have been proposed. In particuarsions of inflation that
make use of two scalar fields [i.e., hybrid inflation (Linde€9191994; Liddle & Lyth 1993;
Copeland et al. 1994; Stewart 1995) and supernatural imfig®Randall, Soljéi¢c, & Guth
1996)] appear to be quite plausible. Nonetheless, in thidat will discuss only the basic
scenarios of new and chaotic inflation, which are sufficienlitistrate the physical effects
that | want to discuss.

The basic inflationary scenario begins by assuming thateat Bome patch of the early
universe was in this peculiar false vacuum state. To bedjation, the patch must be ap-
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proximately homogeneous on the scalgof, as defined by Equation (1.10). In the original
papers (Guth 1981; Linde 1982a; Albrecht & Steinhardt 1988 initial condition was
motivated by the fact that, in many quantum field theories,fise vacuum resulted nat-
urally from the supercooling of an initially hot state in theal equilibrium. It was soon
found, however, that quantum fluctuations in the rollingatdh field give rise to density
perturbations in the universe, and that these density jiations would be much larger than
observed unless the inflaton field is very weakly coupled-(Biasky 1982; Guth & Pi 1982;
Hawking 1982; Bardeen, Steinhardt, & Turner 1983). For suebk coupling there would
be no time for an initially nonthermal state to reach thereaplilibrium. Nonetheless, since
thermal equilibrium describes a probability distributionwhich all states of a given en-
ergy are weighted equally, the fact that thermal equilibrleads to a false vacuum implies
that there are many ways of reaching a false vacuum. Thus,iewbBe absence of thermal
equilibrium—even if the universe started in a highly chadtitial state—it seems reason-
able to assume that some small patches of the early univettéedsinto the false vacuum
state, as was suggested, for example, by Guth (1982). Lir8k3b) pointed out that even
highly improbable initial patches could be important if yhieflated, since the exponential
expansion could still cause such patches to dominate thuenebf the universe. If inflation
is eternal, as | will discuss in 8 1.5, then the inflating volumcreases without limit, and
will presumably dominate the universe as long as the prdibabf inflation starting is not
exactly zero.

Once a region of false vacuum materializes, the physicsestibsequent evolution is
rather straightforward. The gravitational repulsion @ligy the negative pressure will drive
the region into a period of exponential expansion. If thergneensity of the false vacuum
is at the grand unified theory scalgs[~ (2 x 10*® GeV)"], Equation (1.10) shows that
the time constant™ of the exponential expansion would be about®®, and that the
corresponding Hubble length would be about?®@m. For inflation to achieve its goals,
this patch has to expand exponentially for at lease®&@ldings, but the amount of inflation
could be much larger than this. The exponential expansiloiedi away any particles that
are present at the start of inflation, and also smooths oun#teéc. The expanding region
approaches a smooth de Sitter space, independent of this adthow it began (Jensen
& Stein-Schabes 1987). Eventually, however, the inflatold f& any given location will
roll off the hill, ending inflation. When it does, the energgrity that has been locked in
the inflaton field is released. Because of the coupling of tiflatbn to other fields, that
energy becomes thermalized to produce a hot soup of partisteich is exactly what had
always been taken as the starting point of the standard Big Beeory before inflation was
introduced. From here on the scenario joins the standar®Bigy description. The role of
inflation is to establish dynamically the initial condit®that otherwise would have to be
postulated.

The inflationary mechanism produces an entire universgrgidrom essentially nothing,
so one would naturally want to ask where the energy for thigeuge comes from. The
answer is that it comes from the gravitational field. The arge did not begin with this
colossal energy stored in the gravitational field, but nathe gravitational field can supply
the energy because its energy can become negative withomdboAs more and more
positive energy materializes in the form of an ever-growigjon filled with a high-energy
scalar field, more and more negative energy materializdwificdrm of an expanding region
filled with a gravitational field. The total energy remainsistant at some very small value,
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and could in fact be exactly zero. There is nothing knownpletes any limit on the amount
of inflation that can occur while the total energy remainsctiyazero*

Note that while inflation was originally developed in the text of grand unified theories,
the only real requirements on the particle physics are timence of a false vacuum state,
and the possibility of creating the net baryon number of thigarse after inflation.

1.3 Evidence for Inflation

Inflation is not really a theory, but instead it is a paradigma class of theories.
As such, it does not make specific predictions in the samesdbasthe standard model of
particle physics makes predictions. Each specific modetftdtion makes definite predic-
tions, but the class of models as a whole can be tested onlydiyng for generic features
that are common to most of the models. Nonetheless, theige ruenber of features of the
universe that seem to be characteristic consequencesatfanfl In my opinion, the evi-
dence that our universe is the result of some form of inflasorery solid. Since the term
inflationencompasses a wide range of detailed theories, it is hantidgine any reasonable
alternative’

The basic arguments for inflation are as follows:

(1) The universe is big

First of all, we know that the universe is incredibly largae tvisible part of the
universe contains about ¥particles. Since we have all grown up in a large universe,
it is easy to take this fact for granted: of course the unweésshig, it is the whole
universe! In “standard” Friedmann-Robertson-Walker colegy, without inflation,
one simply postulates that about®?@r more particles were here from the start. Many
of us hope, however, that even the creation of the universbeaescribed in scientific
terms. Thus, we are led to at least think about a theory thghhgxplain how the
universe got to be so big. Whatever that theory is, it has toetmw explain the
number of particles, 2 or more. One simple way to get such a huge number, with
only modest numbers as input, is for the calculation to wme@n exponential. The
exponential expansion of inflation reduces the problem giagring 16° particles
to the problem of explaining 60 or 78foldings of inflation. In fact, it is easy to
construct underlying particle theories that will give fapma than 70e-foldings of
inflation. Inflationary cosmology therefore suggests tleaen though the observed
universe is incredibly large, it is only an infinitesimaldten of the entire universe.

(2) The Hubble expansion

The Hubble expansion is also easy to take for granted, sircbave all known
about it from our earliest readings in cosmology. In staddaiedmann-Robertson-
Walker cosmology, the Hubble expansion is part of the lispastulates that define
the initial conditions. But inflation actually offers thegsibility of explaining how the
Hubble expansion began. The repulsive gravity associatddtie false vacuum is

* In Newtonian mechanics the energy density of a gravitatibela is unambiguously negative; it can be derived
by the same methods used for the Coulomb field, but the forednées the opposite sign. In general relativity
there is no coordinate-invariant way of expressing thegniera space that is not asymptotically flat, so many
experts prefer to say that the total energy is undefinedeEitky, there is agreement that inflation is consistent
with the general relativistic description of energy conagon.

* The cyclic-ekpyrotic model (Steinhardt & Turok 2002) is ted by its authors as a rival to inflation, but in fact
it incorporates inflation and uses it to explain why the ursieas so large, homogeneous, isotropic, and flat.
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just what Hubble ordered. It is exactly the kind of force rnegbtb propel the universe
into a pattern of motion in which each pair of particles is mgvapart with a velocity
proportional to their separation.

Homogeneity and isotropy

The degree of uniformity in the universe is startling. Theemsity of the cosmic
background radiation is the same in all directions, aftés @orrected for the motion
of the Earth, to the incredible precision of one part in 100,0To get some feeling
for how high this precision is, we can imagine a marble thapiserical to one partin
100,000. The surface of the marble would have to be shaped &ac@racy of about
1,000 A, a quarter of the wavelength of light. Although mad&gchnology makes
it possible to grind lenses to quarter-wavelength accunaeywould nonetheless be
shocked if we unearthed a stone, produced by natural presebmt was round to an
accuracy of 1,000 A.

The cosmic background radiation was released about 40@€8G after the Big
Bang, after the universe cooled enough so that the opaqamalaeutralized into a
transparent gas. The cosmic background radiation photresrostly been traveling
on straight lines since then, so they provide an image of wWieatiniverse looked like
at 400,000 years after the Big Bang. The observed uniforofittye radiation therefore
implies that the observed universe had become uniform ipéeature by that time. In
standard Friedmann-Robertson-Walker cosmology, a siogieilation shows that the
uniformity could be established so quickly only if signatsitd propagate at about 100
times the speed of light, a proposition clearly contradigthe known laws of physics.

In inflationary cosmology, however, the uniformity is eggkplained. It is created
initially on microscopic scales, by normal thermal equilil;m processes, and then
inflation takes over and stretches the regions of unifortoiyecome large enough to
encompass the observed universe and more.

The flatness problem

| find the flatness problem particularly impressive, becanfsthe extraordinary

numbers that it involves. The problem concerns the valubefatio

Quor = 222 (1.13)
Pc

wherepyo is the average total mass density of the universegmrd3H?/87G is the
critical density, the density that would make the univepsiglly flat. (In the definition
of “total mass density,” | am including the vacuum enepgy. = A/8xG associated
with the cosmological constad\, if it is nonzero.)

For the past several decades there has been general agtéeat€qy lies in the
range

01<2<2, (1.14)

but for most of this period it was very hard to pinpoint theuaalith more precision.
Despite the breadth of this range, the valu€)ddt early times is highly constrained,
since() =1 is an unstable equilibrium point of the standard modelwian. Thus,

if 0 was everxactlyequal to one, it would remain exactly one forever. Howewer, i
Q differed slightly from one in the early universe, that diface—whether positive
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©)

(6)

or negative—would be amplified with time. In particular, &cbe shown tha® -1
grows as

-1 {t (during the radiation-dominated era) (1.15)

t2/3  (during the matter-dominated era) .

At t =1 s, for example, when the processes of Big Bang nucleosgisthvere just
beginning, Dicke & Peebles (1979) pointed out thamust have equaled one to an
accuracy of one part in 18 Classical cosmology provides no explanation for this
fact—it is simply assumed as part of the initial conditiofrs.the context of modern
particle theory, where we try to push things all the way badkeé Planck time, 103s,
the problem becomes even more extreme. If one specifies ive @2 at the Planck
time, it has to equal one to 58 decimal places in order to b&/hese in the range of
Equation (1.14) today.

While this extraordinary flatness of the early universe fmexplanation in classi-
cal Friedmann-Robertson-Walker cosmology, it is a natpradliction for inflationary
cosmology. During the inflationary period, instead(bbeing driven away from one
as described by Equation (1.1%) s driven toward one, with exponential swiftness:

Q-1 o g2t (1.16)

whereH is the Hubble parameter during inflation. Thus, as long asettsea suffi-
cient period of inflation{2 can start at almost any value, and it will be driven to unity
by the exponential expansion. Since this mechanism is yigffiéctive, almost all in-
flationary models predict th&ty should be equal to one (to within about 1 part if)L0
Until the past few years this prediction was thought to bedatsowith observation,
but with the addition of dark energy the observationallyofead value of}g is now
essentially equal to one. According to the latd8lAPresults (Bennett et al. 2003),
Q0 =102+ 0.02, in beautiful agreement with inflationary predictions.
Absence of magnetic monopoles

All grand unified theories predict that there should be, i dpectrum of possible
particles, extremely massive particles carrying a net raigicharge. By combining
grand unified theories with classical cosmology withousitifin, Preskill (1979) found
that magnetic monopoles would be produced so copiouslytiiegtwould outweigh
everything else in the universe by a factor of about?10A mass density this large
would cause the inferred age of the universe to drop to ali®008 years! Inflation is
certainly the simplest known mechanism to eliminate moiepfsom the visible uni-
verse, even though they are still in the spectrum of posgiltécles. The monopoles
are eliminated simply by arranging the parameters so tlilation takes place after
(or during) monopole production, so the monopole densitjiliged to a completely
negligible level.
Anisotropy of the cosmic microwave background (CMB) radrat

The process of inflation smooths the universe essentialtypbetely, but density
fluctuations are generated as inflation ends by the quantutuditions of the inflaton
field. Several papers emerging from the Nuffield Workshopam®ridge, UK, 1982,
showed that these fluctuations are generically adiabaacs&an, and nearly scale-
invariant (Starobinsky 1982; Guth & Pi 1982; Hawking 1982r&een et al. 1983).

* The concept that quantum fluctuations might provide the séadcosmological density perturbations, which
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When my colleagues and | were trying to calculate the spectidensity per-
turbations from inflation in 1982, | never believed for a maréhat it would be
measured in my lifetime. Perhaps the few lowest momentsdvbalmeasured, but
certainly not enough to determine a spectrum. But | was wrdrte fluctuations in
the CMB have now been measured to exquisite detail, and estter Imeasurements
are in the offing. So far everything looks consistent with pinedictions of the sim-
plest, generic inflationary models. Figure 1.3 shows theptrature power spectrum
and the temperature-polarization cross-correlatioredbas the first year of data of the
WMAPexperiment (Bennett et al. 2003). The curve shows the bg'stHining-index”
ACDM model. The gray band indicates one standard deviatiamoértainty due to
cosmic variance (the limitation imposed by being able togamnly one sky). The
underlying primordial spectrum is modeled as a power k& wherens = 1 corre-
sponds to scale-invariance. The best fitMAPalone givess = 0.99+ 0.04. When
WMAPdata is combined with data on smaller scales from other ghens there is
some evidence thatgrows with scale, but this is not conclusive. As mentioneavab
the fit givesQy = 1.02+ 0.02. The addition of isocurvature modes does not improve
the fit, so the expectation of adiabatic perturbations idicoed, and various tests for
non-Gaussianity have found no signs of it.

1.4 The Inflationary Power Spectrum
A complete derivation of the density perturbation spectanising from inflation is
a very technical subject, so the interested reader shofddtethe Mukhanov et al. (1992)
or Liddle & Lyth (1993) review articles. However, in this $ien | will describe the basics
of the subject, for single field slow roll inflation, in a sinegdnd qualitative way.
For a flat universel(= 0) the metric of Equation (1.3) reduces to

ds = —dt> +a%(t)dse . (1.17)

The perturbations are described in terms of linear pertimb#heory, so it is natural to de-
scribe the perturbations in terms of a Fourier expansionércomoving coordinates Each

goes back at least to Sakharov (1965), was pursued in the¥380s by Lukash (1980a, 1980b), Press (1980,
1981), and Mukhanov & Chibisov (1981, 1982). Mukhanov & Gily's papers are of particular interest,
since they considered such quantum fluctuations in the xioofehe Starobinsky (1979, 1980) model, now
recognized as a version of inflation. There is some contsyvand ongoing discussion concerning the historical
role of the Mukhanov & Chibisov papers, so | include a few caenis that the reader can pursue if interested.
Mukhanov & Chibisov first discovered that quantum fluctuagigprevent the Starobinsky model from solving
the initial singularity problem. They then considered tlspbility that the quantum fluctuations are relevant
for density perturbations, and found a nearly scale-iavarspectrum during the de Sitter phase. Without
any derivation that | can presently discern, the 1981 papesa nearly scale-invariant formula for tfieal
density perturbations after the end of inflation, which mikr but not identical to the result that was later
described in detail in Mukhanov, Feldman, & Brandenberd®92). In a recent preprint, Mukhanov (2003)
refers to Mukhanov & Chibisov (1981) as “the first paper whitre spectrum of inflationary perturbations
was calculated.” But controversies surrounding this stat& remain unresolved. Why, for example, were
the authors never explicit about the subtle question of Hwy talculated the evolution of the (conformally
flat) density perturbations in the de Sitter phase into thef@mally Newtonian) perturbations after reheating?
This gap seems particularly evident in the longer 1982 pafad could the Starobinsky model properly be
considered an inflationary model in 1981 or 1982, since atithe there was no recognition in the literature
that the model could be used to explain the homogeneityoisgt or flatness of the universe? It was not until
later that Whitt (1984) and Mijic, Morris, & Suen (1986) dsliahed the equivalence between the Starobinsky
model and standard inflation. After the 1981 and 1982 MukhatadChibisov papers, the topic of density
perturbations in the Starobinsky model was revisited byralver of authors, starting with Starobinsky (1983).
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Fig. 1.3. Power spectra of the cosmic background radiattomeasured bWMAP (Ben-
nett et al. 2003, courtesy of the NASAIMAP Science Team). The top panel shows the
temperature anisotropies, and the bottom panel shows thelation between temperature
fluctuations and=-mode polarization fluctuations. The solid line is a fit cetesnt with
simple inflationary models.

mode will evolve independently of all the other modes. Dgtime inflationary era the phys-
ical wavelength of any given mode will grow with the scaletfa@(t), and hence will grow
exponentially. The Hubble length™, however, is approximately constant during inflation.
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The modes of interest will start at wavelengths far less tHah and will grow during in-
flation to be perhaps 20 orders of magnitude larger tHah For each mode, we will let
ty (“first Hubble crossing”) denote the time at which the wawnelén is equal to the Hubble
length during the inflationary era. When inflation is over tavelength will continue to
grow as the scale factor, but the scale factor will slow dowhethave as(t) o t%/? during
the radiation-dominated era, aa(t) « t%2 during the matter-dominated era. The Hubble
lengthH™* = a/d will grow linearly with t, so eventually the Hubble length will overtake the
wavelength, and the wave will come back inside the Hubblgtlenwe will lett, (“second
Hubble crossing”) denote the time for each mode when the lagéh is again equal to the
Hubble length. This pattern of evolution is important to onderstanding, because com-
plicated physics can happen only when the wavelength islenthlin or comparable to the
Hubble length. When the wavelength is large compared to titgblé length, the distance
that light can travel in a Hubble time becomes small comptrdide wavelength, and hence
all motion is very slow and the pattern is essentially frozen

Inflation ends when a scalar field rolls down a hill in a potairgnergy diagram, such as
Figure 1.1 or 1.2. Since the scalar field undergoes quantwtuéltions, however, the field
will not roll homogeneously, but instead will get a littleedd in some places and a little
behind in others. Hence inflation will not end everywherewtaneously, but instead the
ending time will be a function of position:

tendX) = tendaverage™ ot(x) . (1.18)

Since some regions will undergo more inflation than otheses,have a natural source of
inhomogeneities.

Next, we need to define a statistical quantity that charaetethe perturbations. Letting
%’(X,t) describe the fractional perturbation in the total energydityp, useful Fourier space
quantities can be defined by

[%(R,t)r = (2';3)3/dsxéiz<%(m)‘%’(6¢)> : (1.19a)
[tStN(I?)]2 = (2";)3 / d*xe* (610 at()) , (1.19b)

where the brackets denote an expectation value.

Since the wave pattern is frozen when the wavelength is leoggpared to the Hubble
length, for any given mod& the pattern is frozen betweer(k) andt,(k). We therefore
expect a simple relationship between the amplitude of thieigmation at timed; andt,,
where the perturbation at tinte is described by a time offsét in the evolution of the
scalar field, and &b it is described byip/p. Since we are approximating the problem with
first-order perturbation theory, the relationship mustibedr. By dimensional analysis, the
relationship must have the form

%” (K. ta(K)) = CaH (1) 6E(K) , (1.20)
whereC; is a dimensionless constant adds the only quantity with units of inverse time
that seems to have relevance. Of course, deriving Equdti@f)and determining the value
of C; is a lot of work.

To estimateSf(E), note that we expect its value to become frozen at aboutttifke If the
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classical, homogeneous rolling of the scalar field down tHaéshdescribed bygo(t), then
the offset in timejt is equivalent to an offset of the value of the scalar field,

8¢ =—godt . (1.21)

The sign is not very important, but it is negative becausaiioih will end earliestdt < 0)
in regions where the scalar field has advanced the ndgst-(0, assumingp > 0). ¢
is in principle calculable by solving Equation (1.12), otinigj the spatial Laplacian term.
Although it is a second-order equation, for “slow roll” irtftan one assumes that thieterm
is negligible, so

. 1 0V 8
=— here H?=_"_V 1.22

9="3n gy  Where YA (1.22)
whereM, = 1//G = 1.22x 10 GeV is the Planck masss can be estimated by defining
the quantity&q?(lz,t) in analogy to Equations (1.19), but the quantity on thetriggnd side
is just the scalar field propagator of quantum field theorye €am approximatés(X;t) as a
free massless quantum field evolving in de Sitter space {seexample, Birrell & Davies
1982). We want to evaluaig(k,t) for [Konysical & H. Again we can rely on dimensional
analysis, since has the units of mass, and the only relevant quantity withedsions of
mass isH. Thus,é¢ ~ H, and Equations (1.20)—(1.22) can be combined to give

V3/2

=C3—

vev| (1.23)

Y H2
2 (K tx(K) =C, —
P t(K)

(0]

t(K)

whereC; andC; are dimensionless constants, &fd= 0V /d¢. The entire quantity on the
right-hand side is evaluatedta(E), since it is at this time that the amplitude of the mode is
frozen.

Equation (1.23) is the key result. It describes densityysbetions which are nearly scale
invariant, meaning thaiﬁ(ﬁ,tz(k))/p is approximately independent kf because typically
V(¢) andV'(¢) are nearly constant during the period when perturbatibabgervable wave-
lengths are passing through the Hubble length during infiatiSinceds/p is measurable
andC; is calculable, one can use Equation (1.23) to determine aheevofV3/2/(M3V").
Using COBEdata, Liddle & Lyth (1993) found

V3/2

~ 6

While Equation (1.23) describes density perturbations éna nearly scale invariant, it
also allows us to express the departure from scale invaienterms of derivatives of the
potentialV (¢). One defines the scalar indexby

6p 2
[7(k,t2(k))} x k™ (1.25)
SO

_din [%(R,tz(k))]2
- dink

Ns— (1.26)
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To carry out the differentiation, note thiis related ta; by H =k/ (27ra(t1)). TreatingH
as a constant, since it varies much more slowly thadifferentiation givesdk/dt; = Hk.
Using Equation (1.22) fod¢o/dt, one has (Liddle & Lyth 1992)

3/2 12
1+ dt; d¢o d In {C V :|

o = 2Nk dy do | [ MV
= 1+25-6¢, (1.27)
where
MZ \VZ 2 MZ V!
:_p J— :_p -
‘T 16r (v) o 87r<v)' (1.28)

e andn are the now well-known slow-roll parameters that quantépalrtures from scale in-
variance. (But the reader should beware that some autheightly different definitions.)
Alternatively, Equations (1.22) can be used to exptres®dy in terms of time derivatives of

H H H
= = - 1.29
SO
H H
=1l+4—-—. 1.30

The above equation can be used to motivate a generic estifrtadev muchng is likely to
deviate from 1. Since inflation needs to end at roughly86ids from the timet; (k) when
the right-hand side of Equation (1.23) is evaluated, we a&a 60H™ as the typical time
scale for the variation of physical quantities. For any difaX, we can generically estimate
that|X| ~ HX /60, sons—1~ + 4 + &. We can conclude that typicalty will deviate from
1 by an amount of order 0.1. Of course, any detailed modelmalke a precise prediction
for the value ofns.

15 Eternal Inflation: Mechanisms

The remainder of this article will discuss eternal inflatiethe questions that it
can answer, and the questions that it raises. In this sectimtuss the mechanisms that
make eternal inflation possible, leaving the other issueshi® following sections. | will
discuss eternal inflation first in the context of new inflatiand then in the context of chaotic
inflation, where it is more subtle.

In the case of new inflation, the exponential expansion acasithe scalar field rolls from
the false vacuum state at the peak of the potential energyatia(see Fig. 1.1) toward the
trough. The eternal aspect occurs while the scalar fieldvstirng around the peak. The first
model of this type was constructed by Steinhardt (1983) Jated that year Vilenkin (1983)
showed that new inflationary models are generically eteritéle key point is that, even
though classically the field would roll off the hill, quantumechanically there is always an
amplitude, a tail of the wave function, for it to remain at tbe. If you ask how fast does
this tail of the wave function fall off with time, the answaralmost any model is that it falls
off exponentially with time, just like the decay of most natble states (Guth & Pi 1985).
The time scale for the decay of the false vacuum is contrdijed
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the negative mass-squared of the scalar field when it is abghef the hill in the poten-
tial diagram. This is an adjustable parameter as far as auptthe model is concerned,
but m has to be small compared to the Hubble constant or else thelrdods not lead to
enough inflation. So, for parameters that are chosen to nmekimflationary model work,
the exponential decay of the false vacuum is slower thanstperential expansion. Even
though the false vacuum is decaying, the expansion outhenddcay and the total volume
of false vacuum actually increases with time rather thameseses. Thus, inflation does not
end everywhere at once, but instead inflation ends in losdpatches, in a succession that
continuesad infinitum Each patch is essentially a whole universe—at least itdaats will
consider it a whole universe—and so inflation can be saidddymre not just one universe,
but an infinite number of universes. These universes aretsoerecalled bubble universes,
but I prefer to use the phrase “pocket universe,” to avoidrtigication that they are approx-
imately round. [While bubbles formed in first-order phasmsitions are round (Coleman &
De Luccia 1980), the local universes formed in eternal nélation are generally very irreg-
ular, as can be seen for example in the two-dimensional aitounlin Figure 2 of Vanchurin,
Vilenkin, & Winitzki (2000).]

In the context of chaotic inflationary models the situatigslightly more subtle. Andrei
Linde (1986a, 1986b, 1990) showed that these models aneatier 1986. In this case
inflation occurs as the scalar field rolls down a hill of thegudial energy diagram, as in
Figure 1.2, starting high on the hill. As the field rolls dowrethill, quantum fluctuations
will be superimposed on top of the classical motion. The best to think about this is
to ask what happens during one time interval of duratidrs H™* (one Hubble time), in a
region of one Hubble volumie . Suppose thapy is the average value @f in this region,
at the start of the time interval. By the definition of a Hubblae, we know how much
expansion is going to occur during the time interval: exaatfactor ofe. (This is the only
exact number in this paper, so | wanted to emphasize the.pdimat means the volume will
expand by a factor of®. One of the deep truths that one learns by working on inflaton
thate® is about equal to 20, so the volume will expand by a factor of$ifice correlations
typically extend over about a Hubble length, by the end of Biubble time, the initial
Hubble-sized region grows and breaks up into 20 indeperidiginible-sized regions.

As the scalar field is classically rolling down the hill, tHassical change in the fiel ¢,
during the time intervalAt is going to be modified by quantum fluctuatiofgg,, which
can drive the field upward or downward relative to the cladgdi@jectory. For any one of
the 20 regions at the end of the time interval, we can desthiehange i during the
interval by

e = — (1.31)

A¢p = Aga+Adqu - (1.32)

In lowest-order perturbation theory the fluctuation is teeleas a free quantum field, which
implies thatA¢q,, the quantum fluctuation averaged over one of the 20 Hubbienes at
the end, will have a Gaussian probability distribution hwatwidth of ordeH / 2z (Vilenkin

& Ford 1982; Linde 1982b; Starobinsky 1982, 1986). Therbéntalways some probability
that the sum of the two terms on the right-hand side will batpes—that the scalar field
will fluctuate up and not down. As long as that probability igder than 1 in 20, then the
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number of inflating regions with > ¢ will be larger at the end of the time intervAt than
it was at the beginning. This process will then go on foreseiinflation will never end.
Thus, the criterion for eternal inflation is that the proltiabfor the scalar field to go up
must be bigger than/E% ~ 1/20. For a Gaussian probability distribution, this conditio
will be met provided that the standard deviation fog, is bigger than B1|A¢q|. Using
Adg ~ ¢SC|H‘1, the criterion becomes
H C g H2
Apqum — > 0.61|¢pg|H™™ <= — > 3.8. (1.33)
2n 2]

cl

Comparing with Equation (1.23), we see that the conditiorefernal inflation is equivalent
to the condition thadép/p on ultra-long length scales is bigger than a number of ordiy.u

The probability thatA¢ is positive tends to increase as one considers larger agerlar
values ofp, so sooner or later one reaches the point at which inflaticorbes eternal. If
one takes, for example, a scalar field with a potential

V(§)= 32", (1.34)

then the de Sitter space equation of motion in flat Robert¥alker coordinates (Eq. 1.17)
takes the form

d+3Hd =-\p°, (1.35)

where spatial derivatives have been neglected. In the “stdfvapproximation one also
neglects thep term, so¢ ~ —A¢3/(3H), where the Hubble constaht is related to the
energy density by

H?= —Gp=""%=. (1.36)

Putting these relations together, one finds that the aritefor eternal inflation, Equa-
tion (1.33), becomes

¢ >0.75\7Y6Mm,, . (1.37)

Since\ must be taken very small, on the order of ) for the density perturbations to
have the right magnitude, this value for the field is gengnattll above the Planck scale.
The corresponding energy density, however, is given by

V(¢) = %W‘ =0.070N3M3 . (1.38)

which is actually far below the Planck scale.

So for these reasons we think inflation is almost always etetrthink the inevitability
of eternal inflation in the context of new inflation is reallgassailable—I do not see how
it could possibly be avoided, assuming that the rolling &f $salar field off the top of the
hill is slow enough to allow inflation to be successful. Thguanent in the case of chaotic
inflation is less rigorous, but | still feel confident thatstéssentially correct. For eternal
inflation to set in, all one needs is that the probability foe field to increase in a given
Hubble-sized volume during a Hubble time interval is lardpan 1/20.

Thus, once inflation happens, it produces not just one usdydaut an infinite number of
universes.
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1.6 Eternal Inflation: Implications

In spite of the fact that the other universes created by aterftation are too remote
to imagine observing directly, | nonetheless claim thatetkinflation has real consequences
in terms of the way we extract predictions from theoreticabdels. Specifically, there are
three consequences of eternal inflation that | will discuss.

First, eternal inflation implies that all hypotheses abbatultimate initial conditions for
the universe—such as the Hartle & Hawking (1983) no boungaoposal, the tunneling
proposals by Vilenkin (1984, 1986, 1999) or Linde (1984,898r the more recent Hawk-
ing & Turok (1998) instanton—become totally divorced froinservation. That is, one
would expect that if inflation is to continue arbitrarily fato the future with the production
of an infinite number of pocket universes, then the statisicoperties of the inflating region
should approach a steady state that is independent of tird tonditions. Unfortunately,
attempts to quantitatively study this steady state arereuiimited by several factors. First,
there are ambiguities in defining probabilities, which Wil discussed later. In addition, the
steady state properties seem to depend strongly on sugeckfdn physics, which we do
not understand. That is, the same quantum fluctuations thk¢ mternal chaotic inflation
possible tend to drive the scalar field further and furthethgpotential energy curve, so
attempts to quantify the steady state probability distidsu(Linde, Linde, & Mezhlumian
1994; Garcia-Bellido & Linde 1995) require the impositiohasmme kind of a boundary
condition at larges. Although these problems remain unsolved, | still belihe it is rea-
sonable to assume that in the course of its unending evolwtioeternally inflating universe
would lose all memory of the state in which it started.

Even if the universe forgets the details of its genesis, wewd would not assume that
the question of how the universe began would lose its inter@hile eternally inflating
universes continue forever once they start, they are apfhaneot eternal into the past.
(The wordeternalis therefore not technically correct—it would be more psedb call this
scenaricsemi-eternabr future-eternal) The possibility of a quantum origin of the universe
is very attractive, and will no doubt be a subject of intefessome time. Eternal inflation,
however, seems to imply that the entire study will have to twedaicted with literally no
input from observation.

A second consequence of eternal inflation is that the préibabi the onset of inflation
becomes totally irrelevant, provided that the probabiltynot identically zero. Various
authors in the past have argued that one type of inflation isemp@usible than another,
because the initial conditions that it requires appear nikedy to have occurred. In the
context of eternal inflation, however, such arguments havsignificance. Any nonzero
probability of onset will produce an infinite spacetime volk If one wants to compare two
types of inflation, the expectation is that the one with trediaexponential time constant
will always win.

A corollary to this argument is that new inflation is not de¢hile the initial conditions
necessary for new inflation cannot be justified on the basikernal equilibrium, as pro-
posed in the original papers (Linde 1982a; Albrecht & Steidh 1982), in the context of
eternal inflation it is sufficient to conclude that the prolbigbfor the required initial condi-
tions is nonzero. Since the resulting scenario does notdepe the words that are used to
justify the initial state, the standard treatment of newaitifin remains valid.

A third consequence of eternal inflation is the possibilitgttit offers to rescue the pre-
dictive power of theoretical physics. Here | have in mind $tegtus of string theory, or the
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theory known as M theory, into which string theory has evdlv&he theory itself has an
elegant uniqueness, but nonetheless it appears that themas far from unique (Bousso &
Polchinski 2000; Susskind 2003). Since predictions wiihuhtely depend on the properties
of the vacuum, the predictive power of string/M theory maylibeted. Eternal inflation,
however, provides a possible mechanism to remedy this @mebEven if many types of
vacua are equally stable, it may turn out that there is onguanimetastable state that leads
to a maximal rate of inflation. If so, then this metastabléestill dominate the eternally
inflating region, even if its expansion rate is only infiniteally larger than the other possi-
bilities. One would still need to follow the decay of this mstable state as inflation ends.
It may very well branch into a number of final low-energy vachat the number that are
significantly populated could hopefully be much smallentiize total number of vacua. All
of this is pure speculation at this point, because no one kimw to calculate these things.
Nonetheless, it is possible that eternal inflation mighphelconstrain the vacuum state of
the real universe, perhaps significantly enhancing theigireel power of M theory.

1.7 Does Inflation Need a Beginning?

If the universe can be eternal into the future, is it possib# it is also eternal
into the past? Here | will describe a recent theorem (Bordd.e2003) that shows, under
plausible assumptions, that the answer to this question.is n

The theorem is based on the well-known fact that the momenfuan object traveling on
a geodesic through an expanding universe is redshiftedthfithe momentum of a photon is
redshifted. Suppose, therefore, we consider a timelikeibgeodesic extended backwards,
into the past. In an expanding universe such a geodesic &itllbeshifted. The theorem
shows that under some circumstances the blueshift reacfieisa rapidity (i.e., the speed
of light) in a finite amount of proper time (or affine paramgtdong the trajectory, showing
that such a trajectory is (geodesically) incomplete.

To describe the theorem in detail, we need to quantify whamean by an expanding
universe. We imagine an observer whom we follow backwardsria along a timelike or
null geodesic. The goal is to define a local Hubble paramé&iagahis geodesic, which must
be well defined even if the spacetime is neither homogeneamisatropic. Call the velocity
of the geodesic observef (r), wherer is the proper time in the case of a timelike observer,
or an affine parameter in the case of a null observer. (Althoumg are imagining that we
are following the trajectory backwards in timeis defined to increase in the future timelike
direction, as usual.) To defird, we must imagine that the vicinity of the observer is filled
with “comoving test particles,” so that there is a test péetvelocityu” (7) assigned to each
point 7 along the geodesic trajectory, as shown in Figure 1.4. Thadéles need not be
real—all that will be necessary is that the worldlines cadéfned, and that each worldline
should have zero proper acceleration at the instant itdafes the geodesic observer.

To define the Hubble parameter that the observer measurieeeat,tthe observer focuses
on two particles, one that he passes at timand one at + A7, where in the end he takes
the limit A7 — 0. The Hubble parameter is defined by

* There were also earlier theorems about this issue by Bordeléakin (1994, 1996) and Borde (1994), but
these theorems relied on the weak energy condition, whicta feerfect fluid is equivalent to the condition
p+p > 0. This condition holds classically for forms of matter tlzme known or commonly discussed as
theoretical proposals. It can, however, be violated by tyrarfluctuations (Borde & Vilenkin 1997), and so the
reliability of these theorems is questionable.
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Geodesic Observer
vH(7)

Comoving Test Particles
uk(7)

Fig. 1.4. An observer measures the velocity of passing tedictes to infer the Hubble
parameter.

— Avradial
= 7AI’ ,

whereAuw,gia is the radial component of the relative velocity betweerttv@eparticles, and
Ar is their distance, where both quantities are computed imesieframe of one of the test
particles, not in the rest frame of the observer. Note thatdéfinition reduces to the usual
one if it is applied to a homogeneous isotropic universe.

The relative velocity between the observer and the tesictegtcan be measured by the
invariant dot product,

(1.39)

y=uot, (1.40)
which for the case of a timelike observer is equal to the uspetial relativity Lorentz factor

-1 (1.41)

Y
,/1—1)rze|

If H is positive we would expect to decrease with, since we expect the observer’s
momentum relative to the test particles to redshift. It suat, however, that the relationship
betweerH and changes in can be made precise. If one defines

_[1/)y for null observers
FO) = { arctanh()v) for timelike observers , (1.42)
then
h=dF0) (1.43)
dr

I like to call F(v) the “slowness” of the geodesic observer, because it iseseas the
observer slows down, relative to the test particles. Thersiss decreases as we follow the
geodesic backwards in time, but it is positive definite, dratd¢fore cannot decrease below
zero.F(v) = 0 corresponds t9 = oo, or a relative velocity equal to that of light. This bound
allows us to place a rigorous limit on the integral of Equai{ib.43). For timelike geodesics,
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Tf 1
/ Hdr < arctanl’(;) = arctanl-(w / 1‘“r2e|> , (1.44)

where~; is the value ofy at the final timer = 7;. For null observers, if we normalize the
affine parameter by dr/dt = 1 at the final timer¢, then

Tf
/ Hdr<1. (1.45)

Thus, if we assume aaveraged expansion conditipne., that the average value of the
Hubble parametef,, along the geodesic is positive, then the proper length orealength
for null trajectories) of the backwards-going geodesi@sided. Thus, the region for which
Hav > O is past-incomplete.

It is difficult to apply this theorem to general inflationarydels, since there is no ac-
cepted definition of what exactly defines this class. Howenestandard eternally inflating
models, the future of any point in the inflating region can bsalibed by a stochastic model
(Goncharov, Linde, & Mukhanov 1987) for inflaton evolutiomlid until the end of infla-
tion. Except for extremely rare large quantum fluctuatidhsy /(87 /3)Gp+, wherep¢
is the energy density of the false vacuum driving the inffatidhe past for an arbitrary
model is less certain, but we consider eternal models fochvthie past is like the future. In
that caseH would be positive almost everywhere in the past inflatingaegIf, however,
Hav > 0 when averaged over a past-directed geodesic, our theorplies that the geodesic
is incomplete.

There is, of course, no conclusion that an eternally infiptiodel must have a unique be-
ginning, and no conclusion that there is an upper bound olettggh of all backwards-going
geodesics from a given point. There may be models with regadrcontraction embedded
within the expanding region that could evade our theoremuirkg & Gratton (2002, 2003)
have proposed a model that evades our theorem, in which tbe af time reverses at the
t = —oo hypersurface, so the universe “expands” in both halveseofitth de Sitter space.

The theorem does show, however, that an eternally inflatindehof the type usually
assumed, which would lead td,, > O for past-directed geodesics, cannot be complete.
Some new physics (i.e., not inflation) would be needed tordmsthe past boundary of the
inflating region. One possibility would be some kind of quantcreation event.

One particular application of the theory is the cyclic elgiie model of Steinhardt &
Turok (2002). This model had,, > 0 for null geodesics for a single cycle, and since every
cycle is identicalHay > 0 when averaged over all cycles. The cyclic model is theeefor
past-incomplete and requires a boundary condition in tlsé pa

1.8 Calculation of Probabilities in Eternally Inflating Uni verses

In an eternally inflating universe, anything that can happ#irhappen; in fact, it
will happen an infinite number of times. Thus, the questionvbét is possible becomes
trivial—anything is possible, unless it violates some dltgoconservation law. To extract
predictions from the theory, we must therefore learn toimtistish the probable from the
improbable.

However, as soon as one attempts to define probabilities @teanally inflating space-
time, one discovers ambiguities. The problem is that thepgaspace is infinite, in that an
eternally inflating universe produces an infinite number ket universes. The fraction
of universes with any particular property is therefore étmanfinity divided by infinity—a
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meaningless ratio. To obtain a well-defined answer, onesteithvoke some method of
regularization. In eternally inflating universes, howetke answers that one gets depend
on how one chooses the method of regularization.

To understand the nature of the problem, it is useful to thindut the integers as a model
system with an infinite number of entities. We can ask, fomegple, what fraction of the

integers are odd. With the usual ordering of the integerg, B, ..., it seems obvious that
the answer is 12. However, the same set of integers can be ordered by wititingodd
integers followed by one even integer, asiB,12, 5,7, 4, 9,11, 6,.... Taken in this order,

it looks like 2/3 of the integers are odd.

One simple method of regularization is a cut-off at equaletsurfaces in a synchronous
gauge coordinate system. Specifically, suppose that orstroots a Robertson-Walker co-
ordinate system while the model universe is still in thedalacuum (de Sitter) phase, before
any pocket universes have formed. One can then propagateahidinate system forward
with a synchronous gauge conditibrand one can define probabilities by truncating the
spacetime volume at a fixed valtieof the synchronous time coordindtel will refer to
probabilities defined in this way as synchronous gauge mitities.

An important peculiarity of synchronous gauge probaletitis that they lead to what |
call the “youngness paradox.” The problem is that the volafialse vacuum is growing
exponentially with time with an extraordinarily small tirmenstant, in the vicinity of 157 s.
Since the rate at which pocket universes form is proportimnhe volume of false vacuum,
this rate is increasing exponentially with the same timestamt. This means that for every
universe in the sample of agethere are approximately e>{;1037} universes with age-(1
s). The population of pocket universes is therefore an @ibhgyouth-dominated society, in
which the mature universes are vastly outnumbered by wegdhat have just barely begun
to evolve.

Probability calculations in this youth-dominated ensesibad to peculiar results, as was
first discussed by Linde, Linde, & Mezhlumian (1995). Sincatune universes are incredi-
bly rare, it becomes likely that our universe is actually inyounger than we think, with our
part of the universe having reached its apparent maturioutsh an unlikely set of quantum
jumps. These authors considered the expected behavioe gh#iss density in our vicin-
ity, concluding that we should find ourselves very near thrgereof a spherical low-density
region.

Since the probability measure depends on the method usadhizate the infinite space-
time of eternal inflation, we are not forced to accept the equences of the synchronous
gauge probabilities. A method of calculating probabiditieat gives acceptable answers has
been formulated by Vilenkin (1998) and his collaboratorar{thurin et al. 2000; Garriga &
Vilenkin 2001). However, we still do not have a compelling@ment from first principles
that determines how probabilities should be calculated.

1.9 Conclusion

In this paper | have summarized the workings of inflation, Hrelarguments that
strongly suggest that our universe is the product of inflatib argued that inflation can
explain the size, the Hubble expansion, the homogeneéystiropy, and the flatness of our

* By a synchronous gauge condition, | mean that each equaltiypersurface is obtained by propagating every

point on the previous hypersurface by a fixed infinitesimaletiinterval At in the direction normal to the
hypersurface.
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universe, as well as the absence of magnetic monopolesyandtee characteristics of the
nonuniformities. The detailed observations of the cosmaikiground radiation anisotropies
continue to fall in line with inflationary expectations, atie® evidence for an accelerating
universe fits beautifully with the inflationary preferenae & flat universe. Our current
picture of the universe seems strange, with 95% of the enerigyms of matter that we do
not understand, but nonetheless the picture fits togettmgmwel.

Next | turned to the question of eternal inflation, claimihgttessentially all inflationary
models are eternal. In my opinion this makes inflation vetyust: if it starts anywhere,
at any time in all of eternity, it produces an infinite numbépocket universes. Eternal
inflation has the very attractive feature, from my point adwj that it offers the possibility
of allowing unique (or possibly only constrained) predias even if the underlying string
theory does not have a unique vacuum. | discussed the patgrofbly inflating models,
concluding that under mild assumptions the inflating regiust have a past boundary, and
that new physics (other than inflation) is needed to deseviet happens at this boundary.
| have also described, however, that our picture of etemmidtion is not complete. In
particular, we still do not understand how to define probtidsdl in an eternally inflating
spacetime.

The bottom line, however, is that observations in the pastfears have vastly improved
our knowledge of the early universe, and that these new eitéens have been generally
consistent with the simplest inflationary models.
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