The Fates of Stars

Two simple relations are of extreme importance in stellar evolution.

Mass-Luminosity Relation: $L \propto M^4$

Lifetime Relation: $t_{life} \propto M/L = 1/M^3$

Keep in mind these are only approximations - rules of thumb that have been shown to fit the data reasonably well, not fundamental laws of nature (like the inverse-square or Stefan-Boltzmann laws.) Furthermore, they *only* work for main-sequence stars: once a star uses up its hydrogen fuel at its center, its luminosity changes radically and the above laws become completely invalid.

The following table lists data on several bright main-sequence stars:

Example star	spectral class	temp. (K)	luminosity (L _{sun})	radius (R _{sun})	mass (M _{sun})	lifetime (years)	post-MS evolution
Meissa	0	36000	80000	7.3	**	**	
Regulus	В	12000	240	3.6			
Sirius	Α	9300	23	1.8			
Procyon	F	6500	6.8*	2.1*			
Sun	G	5800	1	1	1	10 billion	red giant → white dwarf
Eps. Eridani	K	5070	0.27	0.68			
Proxima Cen.	М	3070	0.0018	0.15	**	**	

Notes:

- **1.** Plot these seven stars on a temperature-luminosity diagram on the nearest board. (You don't have to be perfectly accurate; just show the general trend.) Remember that the temp. axis goes backwards.
- 2. Calculate the **mass** and total **lifetime** of one of these stars and fill this entries in the table. Make sure to translate the lifetime to years. (You may do the other stars if you have extra time.)
- **3.** Use the flowchart on the handout from last time to figure out how each star will evolve once it leaves the main-sequence; add a short description of this to the final column of the table.
- **4.** Suppose you are a member of a "creator race" of aliens, looking to seed long-lived civilizations throughout the galaxy. Based purely on lifetime considerations, what kind of star is best for this purpose?
- **5.** The star Betelgeuse has a temperature of 3000 K and a luminosity of 55000 L_{sun}. Can we infer its mass and/or lifetime using the mass-luminosity relation? (If so, what is it? If not, why not?)
- 6. Based purely on the information above, can we tell which of these stars is oldest?

^{*} Procyon is at the end of its main sequence life and is unusually bright and large for a main-sequence F-star.

^{**} The mass-luminosity relation is particularly tenuous for very luminous and very faint stars.