
Original worksheet by D. Perley

Measuring the Properties of Stars

Parallax – Calculating Distance

We can determine the distance to stars by measuring parallax – the 
shift in the star's position in the sky over the course of the year (specifically, over 3 months) 
relative to other stars.  The further away a star is, the smaller its shift in position – a relationship 
that can be easily determined by trigonometry:

Astronomers define a convenient quantity known as the parsec to simplify parallax calculations –
one parsec is the distance to a star with a parallax of one arcsecond (an arcsecond is 1/3600 of a 
degree), which works out to 206265 AU, 3.09 × 1013 km, or 3.261 light years.  When we use this 
unit, the distance (in parsecs) is simply equal to one over the parallax angle (in arcseconds).

This technique only works out to a limited distance – for stars that are too far away, the parallax 
angle is too small to measure (this is the case for the "background stars" we use to measure 
parallax angles).  At the present the smallest parallax angle we can measure is about 0.001 
arcsec, or 1000 parsecs (about 3300 light years).  This is enough for most of the stars we see in 
the sky, but not most of the stars in the Galaxy (which is over 20000 parsecs across).

Inverse Square Law – Calculating Luminosity

A quick glance at the night sky will tell you that different stars have different brightnesses.  But 
how much of that effect is due to the fact that some stars are further away, and how much is due 
to certain stars being intrinsically brighter?

If we know the distances from parallax, we can remove the effect of distance and calculate the 
intrinsic brightness, or luminosity – the total energy the star emits per second.  Imagine building a 
gigantic shell centered around the star, giving that shell a radius d equal to the distance between 
the star and Earth.  A detector placed on the inside of the shell receives a certain amount of 
energy per second – this is the brightness b we measure, in ergs per second per square 
centimeter.  But while a single detector only receives a tiny fraction of the star's energy, if we 
were to cover the entire shell in detectors, the shell would receive all the energy from the star.  
Since the surface area of the shell is 4πd2, and each unit of area receives b units of energy per 
second, the total luminosity (the energy per second captured by the whole sphere) is equal to      
L = b × 4πd2.

Be careful – luminosity is normally given in watts (joules per second) or ergs per second, or in 
solar luminosities, while the parallax formula gives d in units of parsecs.  You have to convert the 
distance to meters or centimeters before plugging in – unless you use ratios (as you almost 
always should in this class).
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Wien's Law – Calculating Surface Temperature

To a reasonably good approximation, stars are 
blackbodies – so if we graph a star's spectrum, we can 
calculate the temperature of its surface using Wien's 
Law.  As given earlier in the semester, the peak 
wavelength (λpeak, the wavelength at which the star emits 
the most energy) is given by λpeak = 3 × 107 Å·K  / T. 
Rearrange terms to get a simple expression for 
determining the temperature: T = 3 × 107 Å·K  / λpeak.

Note that this only gives the surface temperature (the 
temperature of the star's photosphere).  The interior 
parts of the star are much, much hotter.

Stefan-Boltzmann Law – Calculating Radius

As given in class, the Stefan-Boltzmann law indicates the 
amount of energy per second (power) emitted by a blackbody 
per unit of surface area as determined by its temperature.  So 
if we know the total power emitted by a star (its luminosity), and we know its temperature from 
Wien's law, we can calculate its total surface area – and determine its size.

To do this in practice, first find the energy per second emitted by each unit of surface area, ε, 
using the relation given in class (ε = σ T4).  The luminosity of a star is given by the power emitted 
per unit area times its surface area (L = ε S); for a sphere, S = 4π R2, so L = ε S = (σ T4)(4π R2).  
Expressing this in terms of radius, R = (L / (4π σ T4))1/2.

Never confuse the radius of the star R with the distance to the star d!  Although both are 
measures of length that appear in our equations squared and multiplied by 4π, they are 
extremely different!  

In addition, keep in mind that the Stefan-Boltzmann law tells you the total luminosity in all 
wavebands, including UV, infrared, and others – not just visible light.  For most stars, the visible 
spectrum represents only a small fraction of this total energy, and the brightness you detect (and 
therefore the luminosity you derive) from your eye, or with an ordinary camera, cannot be 
compared to the Stefan-Boltzmann luminosity without making corrections.

Star Calculation Flowchart

Grey indicates properties and rules not described in this worksheet.
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