

Millimeter-Wave Observations of GRB Afterglows

Daniel Perley (Caltech)
+ Alessandra Corsi, Assaf Horesh, Bradley Cenko,
Dale Frail and many others

Outline

Background Overview Gamma-ray bursts Synchrotron afterglow

What millimeter-wave data contributes Energies, densities, testing models Early-time observations and reverse shock

CARMA Results

Remarkable CARMA GRBs past/present Diversity of environments / shock physics

Long-Duration Gamma-Ray Bursts

Relativistic ($\Gamma = \sim 100$), collimated ($\theta \sim 10^{\circ}$) explosions launched by massive stars in the moments following core-collapse.

Extremely powerful (10⁵¹ erg) but extremely rare (~1/galaxy/10⁶ years) and last only a few (~10) seconds.

Open questions:

What is the progenitor?
(Ultra-massive WR, binary, etc.)
How is radiation generated?

What can they teach us?

(About locations of star-formation, fundamental physics, etc.)

2013-07-09

Relativistic ejecta plows into circumstellar medium, producing a relativistic shock wave

Afterglows

Electrons excited to relativistic speeds by the shock wave gyrate along magnetic field lines and release synchrotron radiation:

Afterglows

Electrons excited to relativistic speeds by the shock wave gyrate along magnetic field lines and release synchrotron radiation:

Afterglows

Electrons excited to relativistic speeds by the shock wave gyrate along magnetic field lines and release synchrotron radiation:

2013-07-09

Why millimeter?

At late times...

Unique, critical region of synchrotron SED – necessary to constrain burst's environment and total energetics.

At early times...

Ideal band for observing the *reverse shock*, a basic prediction of standard models.

At any time...

Unaffected by gas and dust; can uncover GRBs from dust-obscured environments.

Peak flux and frequency set by density of environment and energy (per Ω) of shock.

Peak flux and frequency set by density of environment and energy (per Ω) of shock.

Evolution is set by density profile:

Evolution is set by density profile:

Jet eventually (depending on beaming angle) becomes non-relativistic and spreads, causing break to rapid fading:

2013-07-09

Jet eventually (depending on beaming angle) becomes non-relativistic and spreads, causing break to rapid fading:

Objectives of Millimeter Observations

Circumburst environment

Wind-driven profile or not? Density/velocity? Progenitor? (WR, LBV, binary, something else, multiple types?)

Energetics of shock and burst

E_{shockwave} vs E_{gamma-rays} : *efficiency*

GRB radiation mechanism?

How much material is ejected and how fast?

Beaming angle / true energy scale

Test of standard afterglow models

X-ray – density independent; cooling timescale; central-engine flaring Optical – Difficult to gather at late times (runs into SN/host), cooling timescale, dust Radio – Self-absorption, interstellar scintillation

2013-07-09

All 3mm Light Curves as of 2010

2013-07-09

CARMA vs. The World

	CARMA	Everyone else
2006	0	1
2007	1	3
2008	1	3
2009	1	2
2010	0	2
2011	1	1
2012	2	3
2013	5	0

Reported detections:

11

14

Some prominent CARMA GRBs

Some prominent CARMA GRBs

Recent CARMA GRBs

Recent CARMA GRBs

The Reverse Shock

The Reverse Shock

The Reverse Shock

Predicted Light Curve

Light Curves

27

Time-Evolving Spectral Energy Distribution

Conclusions

Millimeter observations are critical for determining the burst environment and energetics.

Improved samples of *all types of bursts* (bright, faint, nearby, dust-obscured) are giving a better picture of GRB demographics. GRBs are diverse: progenitor can produce strong and weak winds, "slow" ejecta as well as fast ejecta; diversity of explosion energy scales.

Clearest-ever detection of a reverse shock in GRB130427A.