Millimeter-Wave Observations of GRB Afterglows Daniel Perley (Caltech) + Alessandra Corsi, Assaf Horesh, Bradley Cenko, Dale Frail and many others #### Outline #### **Background Overview** Gamma-ray bursts Synchrotron afterglow ## What millimeter-wave data contributes Energies, densities, testing models Early-time observations and reverse shock #### **CARMA Results** Remarkable CARMA GRBs past/present Diversity of environments / shock physics ## Long-Duration Gamma-Ray Bursts Relativistic ($\Gamma = \sim 100$), collimated ($\theta \sim 10^{\circ}$) explosions launched by massive stars in the moments following core-collapse. Extremely powerful (10⁵¹ erg) but extremely rare (~1/galaxy/10⁶ years) and last only a few (~10) seconds. Open questions: What is the progenitor? (Ultra-massive WR, binary, etc.) How is radiation generated? What can they teach us? (About locations of star-formation, fundamental physics, etc.) 2013-07-09 ## Relativistic ejecta plows into circumstellar medium, producing a relativistic shock wave #### Afterglows Electrons excited to relativistic speeds by the shock wave gyrate along magnetic field lines and release synchrotron radiation: #### Afterglows Electrons excited to relativistic speeds by the shock wave gyrate along magnetic field lines and release synchrotron radiation: #### Afterglows Electrons excited to relativistic speeds by the shock wave gyrate along magnetic field lines and release synchrotron radiation: 2013-07-09 ## Why millimeter? #### At late times... Unique, critical region of synchrotron SED – necessary to constrain burst's environment and total energetics. #### At early times... Ideal band for observing the *reverse shock*, a basic prediction of standard models. #### At any time... Unaffected by gas and dust; can uncover GRBs from dust-obscured environments. Peak flux and frequency set by density of environment and energy (per Ω) of shock. Peak flux and frequency set by density of environment and energy (per Ω) of shock. #### Evolution is set by density profile: #### Evolution is set by density profile: Jet eventually (depending on beaming angle) becomes non-relativistic and spreads, causing break to rapid fading: 2013-07-09 Jet eventually (depending on beaming angle) becomes non-relativistic and spreads, causing break to rapid fading: #### Objectives of Millimeter Observations #### **Circumburst environment** Wind-driven profile or not? Density/velocity? Progenitor? (WR, LBV, binary, something else, multiple types?) #### **Energetics** of shock and burst E_{shockwave} vs E_{gamma-rays} : *efficiency* GRB radiation mechanism? How much material is ejected and how fast? Beaming angle / true energy scale #### **Test** of standard afterglow models X-ray – density independent; cooling timescale; central-engine flaring Optical – Difficult to gather at late times (runs into SN/host), cooling timescale, dust Radio – Self-absorption, interstellar scintillation 2013-07-09 ## All 3mm Light Curves as of 2010 2013-07-09 #### CARMA vs. The World | | CARMA | Everyone
else | |------|-------|------------------| | 2006 | 0 | 1 | | 2007 | 1 | 3 | | 2008 | 1 | 3 | | 2009 | 1 | 2 | | 2010 | 0 | 2 | | 2011 | 1 | 1 | | 2012 | 2 | 3 | | 2013 | 5 | 0 | Reported detections: 11 **14** ## Some prominent CARMA GRBs #### Some prominent CARMA GRBs #### Recent CARMA GRBs #### Recent CARMA GRBs #### The Reverse Shock #### The Reverse Shock #### The Reverse Shock ## **Predicted Light Curve** ## Light Curves 27 ## Time-Evolving Spectral Energy Distribution #### Conclusions Millimeter observations are critical for determining the burst environment and energetics. Improved samples of *all types of bursts* (bright, faint, nearby, dust-obscured) are giving a better picture of GRB demographics. GRBs are diverse: progenitor can produce strong and weak winds, "slow" ejecta as well as fast ejecta; diversity of explosion energy scales. Clearest-ever detection of a reverse shock in GRB130427A.