Superluminous Supernovae

Daniel Perley (Caltech)

For more info: see review by Gal-Yam (Science 337:927; 2012)

Supernova searches enter the modern era

<1990: Serendipity, amateurs, pre-CCD searches

1990-2005: High-z, nearby-galaxy dedicated SN searches

2005-present: Wide-field cameras, heavy-duty computing enable large-volume, untargeted surveys

PTF Summer School

D. Perley

2014-08-28

Superluminous SNe

Supernova 2006gy

SN Absolute Magnitude Distribution

Suddenly, SLSNe Everywhere

SNE with Mpeak < -21 found before 2010:

Texas/ROT SN 2005 SN 2006 SN 2006 SN 2006	SE: 5ap -22.7 5gy -22.0 3am -22.4 3es -22.2	mag Quimby+2007 Smith+2007, Ofek- Chatzopoulous+20 Miller+2009, Gezar	+2007 11 ri+2009			
Nearby Sup SN 2007	ernova Fa ′bi -21.3	ctory: Gal-Yam+2009				
CRTS: SN 2008	3fz -22.3	Drake+2009				
PTF: PTF 096 PTF 096 PTF 096	atu -22.0 cnd -22.0 cwl -22	Quimby+2011 And, archival re-disc SN1999as (NEA SN2006oz (SDS	overies/re-interpretations T, AAS poster 198.39.02)	: 2012)		
(Many, many more in 2010 and after)		SN200002 (SDS SN2003ma (Sup SCP06F6 (HST	SN200002 (SDSS SN survey, Leloudas+2012) SN2003ma (SuperMacho; Rest+2011) SCP06F6 (HST SCP; Barbary+2007)			
2014-08-28	D. Perley	PTF Summer School	Superluminous SNe	5		

SLSNe are Diverse

Not straightforward:

Multiple observables/criteria to consider

Spectra evolve with time

Would like to map classes to theory, but theory can mislead

Many proposed classes have only 1 (or 2 or 3) members

Classification: Conservative

Two unambiguous *spectroscopic* classes frequently seen in PTF (10+examples each):

<u>SLSN - Ic</u>

No hydrogen (or helium) at any epoch at any width (except from host)

Broad UV absorption features of intermediate elements (C, O, Mg, Si)

<u>SLSN - IIn</u>

Intermediate+narrow width hydrogen lines

+ many possible light-curve subclasses and oddballs - more later

SLSN I spectra

SLSN I light curves

SLSN IIn spectra

SLSN IIn Light Curves

Classification: Detailed

<u>Type I</u>

<u>Type II</u>

SLSN I - normal

Rapid light curve decay Quimby+2011

SLSN I - R

Exponential light curve decay Gal Yam+2009

SLSN I - fast (PS1-10afx)

Very fast rise and fall; severe challenge to models Chornock+2013 Probably a lensed la Quimby+2013,2014

SLSN II-n

Narrow/intermediate H lines, rapid rise(?) but very slow fall

SLSN IIn-peculiar (SN 2006gy) Complicated, evolving H profile Extremely long-lived

Circumnuclear

SLSN II-L (2008es, CSS121025) Broad H lines only after peak, short-lived with fast decay

SN Ia-CSM

IIn lines overlying la spectrum e.g. Dilday+2012, Silverman+2013

SLSN Numbers

<u>Class</u>	lass <u>rise</u> <u>dec</u>		velocity	<u>Erad</u>	<u>rate/CC</u>	
I-norm	~40 d?	20-60 d	10 ⁴ km/s	1-4×10 ⁵¹ erg	~0.05%	
II-n	~20 d	~100 d	(multiple)	1-4×10 ⁵¹ erg	~0.10%	
I-R	~50 d?	~150 d	10 ⁴ km/s	2-4×10 ⁵¹ erg	~0.05%?	
II-L	~40 d	~40 d	10 ⁴ km/s	1×10 ⁵¹ erg	~0.03%?	
II-pec	~60 d	~100 d	4x10 ³ km/s	2×10 ⁵¹ erg	~0.5%??	

Quimby+2013, Chornock 2014 Aspen talk

Supernova Energetics

Total radiated energy of a SLSN: $\sim 10^{51}$ erg Total radiated energy of a normal ccSN: $\sim 10^{47-49}$ erg

"Why do SLSNe radiate so much energy?"

Supernova Energetics

16

Total radiated energy of a SLSN: $\sim 10^{51}$ erg Total radiated energy of a normal ccSN: $\sim 10^{47-49}$ erg

"Why do SLSNe radiate so much energy?"

Total energy released by a normal ccSN: ~ 10⁵³ erg (~binding energy of a NS)

Supernova Energetics

Total radiated energy of a SLSN: $\sim 10^{51}$ ergTotal radiated energy of a normal ccSN: $\sim 10^{47-49}$ erg

"Why do SLSNe radiate so much energy?"

Total energy released by a normal ccSN:~ 10⁵³ erg(~binding energy of a NS)99% neutrinos1% kinetic energy1% kinetic energy<0.01% radiation</td>

"Why do non-SLSNe radiate so little energy?!"

Radiatively Inefficient SNe

"Why do non-SLSNe radiate so little energy?!"

Stars are opaque.

SN must expand before it can shine; energy lost adiabatically.

Radiatively Efficient SNe

Solution: *store* the SN-deposited energy temporarily, or *convert* kinetic energy to radiation.

Nucleosynthesis: Store energy by synthesizing heavy elements that later decay/reheat ejecta.

Interaction: Reconvert the KE into heat by colliding/shocking with thick pre-existing gas

Central engine: Hold the energy in a compact object, then reheat the expanding ejecta from within

Radiatively Efficient SNe

Solution: *store* the SN-deposited energy temporarily, or *convert* kinetic energy to radiation.

Nucleosynthesis: Store energy by synthesizing heavy elements that later decay/reheat ejecta.

Interaction: Reconvert the KE into heat by colliding/shocking with thick pre-existing gas

Central engine: Hold the energy in a compact object, then reheat the expanding ejecta from within

Nucleosynthetic SNe

One reaction chain provides nearly **all** SN ejecta heating:

$$\begin{array}{c} \mathbf{^{56} Ni} \longrightarrow {}^{56} \mathrm{Co} \longrightarrow {}^{56} \mathrm{Fe} \\ \mathbf{t_{1/2}} = \mathbf{^{6} d} & \mathbf{t_{1/2}} = \mathbf{^{77} d} \end{array}$$

This is the only reason $Ni \rightarrow Co$ most SNe are bright at all! -20 SN1998bw (non-SL) heating Subsequent cobalt decay powers long-lived, slowlydecaying "tail" -16 $Co \rightarrow Fe$ heating ∼∝ M_{Ni} late -12 ~0.3 M_☉ 1000 1100 1200 1300 1400 JD-2450000 Clocchiatti+2011 D. Perley Superluminous SNe PTF Summer School 2014-08-28 21

Little Ni-56 in many SLSNe

Type I-R's

"R" is for "Radioactive": Some SLSNe-I appear to follow Co56 decay slope.

A Huge Nickel Yield is Necessary

Pair-Instability Supernovae

Ordinary ccSN:

D. Perley Superluminous SNe 2014-08-28 PTF Summer School

Type I-R = Pair Instability?

Interpretation of these events is controversial.

<u>Yes</u>

e.g., Gal-Yam+2009

Light
CurveExponential late-time decay is a
good match to expected cobalt
decline

SpectraLate-time I-R spec show strong
intermediate-element emission
features, indicative of huge
synthesized masses and in
agreement with models

PISN requires very low metallicity Pair-ir and SLSN I-R seem to prefer work, metal-poor galaxies poor c No e.g., Nicholl+2014

Rise time may be too fast for a >100 Mo star; magnetar model works better

Observed spectra are too blue? Extensive nucleosynthesis should line-blanket and redden blue/UV

Pair-instability model doesn't work, except in *extremely* metalpoor galaxies

Host

Galaxies

Radiatively Efficient SNe

Solution: *store* the SN-deposited energy temporarily, or *convert* kinetic energy to radiation.

Nucleosynthesis: Store energy by synthesizing heavy elements that later decay/reheat ejecta.

Interaction: Reconvert the KE into heat by colliding/shocking with thick pre-existing gas

Central engine: Hold the energy in a compact object, then reheat the expanding ejecta from within

Interaction

Ejecta expands, then shocks against a shell/cloud of pre-existing matter and heats it

SN IIn: Signature of Interaction

29

Interaction-Powered SLSNe

Most SLSN-II have narrow Balmer lines: interaction clearly involved.

Efficient conversion requires M_{shell} ~ M_{ejecta} at R~1000 AU (i.e., a significant fraction of the star)

Extremely massive stars *can* violently expel huge shells of gas!

(But, then they have to explode soon after...)

Eta Carinae Homonculus nebula (produced by great eruption of 1841)

30

Massive Stellar Instability Before Death

Losing 20% of its mass cannot be an everyday event for a star...

Late-Burning Instability

Most (normal) type IIn SNe also seem to be preceded by large eruptions in final months/years – as do some type Ib/c (e.g.) Instability/explosion brought on by heavy-element burning?

> Ofek+2014 Foley+2007 Corsi+2014

Pulsational Pair-Instability SN

In stars of "intermediate" mass (95-130 M_☉), the first PI explosion can fail to destroy the star. Later explosions collide with ejecta from previous explosions!

Woosley+2007

SLSN-I from Interaction?

Could a hydrogen-free shell explain SLSN-I?

Blinnikov & Sorokina 2010, Chevalier & Irwin 2011, Ginzburg & Balberg 2012, Moriya & Maeda 2012

Unlikely to be *primary* cause:

- No narrow-emission features ever seen.
- Broad absorption features indicate photosphere is in the ejecta (shell is thin)
- Light curve can keep going for years (type R)

SLSN-I from Interaction?

Type Ia-CSM

Underlying explosion doesn't have to be core-collapse! Interaction can boost Ia SNe into SLSN magnitude range.

Nearly indistinguishable from IIn at early times.

Radiatively Efficient SNe

Solution: *store* the SN-deposited energy temporarily, or *convert* kinetic energy to radiation.

Nucleosynthesis: Store energy by synthesizing heavy elements that later decay/reheat ejecta.

Interaction: Reconvert the KE into heat by colliding/shocking with thick pre-existing gas

Central engine: Hold the energy in a compact object, then reheat the expanding ejecta from within

Magnetars

Ultra-magnetic (~10¹⁴ G) NS's

Strong magnetic field taps rotation energy via dipole radiation

Known magnetars spin slowly, but may have been born spinning very fast

Not rare: ~10% of MW SNe produce magnetars

Kouveliotou+1998

Magnetars & SLSNe

Kasen & Bildsten 2010, Woosley 2010, Dessart et al. 2012, Metzger et al. 2013

 $B \sim \text{few} \times 10^{14}$ G, $P \sim \text{few}$ millisec proto-magnetar will inject $\sim 10^{51}$ erg of rotation energy towards the expanding ejecta

Simple spindown injection models seem to explain a large variety of SLSN observables and accommodate observed diversity in energies, timescales, etc.

Possible cons: "Too" flexible? Does the energy actually reach/thermalize the ejecta?

PTF and SLSNe

2014-08-28 D. Perley PTF Summer School Superluminous SNe

Most theoretical work/interpretation is based on the first few detected SLSNe – i.e., $N_{SLSNe} < N_{papers}$

In this situation, more are obviously necessary...!

	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>TOTAL</u>
Type I	3	9	4	3	6	3	28
(R)	0	2	0	1	2	?	5
Type II	1	8	1	4	1	0	15
la-CSM	0	2	1	2	?	?	5

2012+: iPTF rapid cadence covers less area (fewer detections) but coadd pipeline allows us to go deeper \rightarrow find more distant SNe.

Earlier, Closer, Further, Brighter, Weirder

PTF 12dam (z=0.10)

PTF 14tb (z=0.942)

2014-08-28

D. Perley

PTF 13dcc (z=0.4305)

PTF Summer School

Superluminous SNe

Host environment likely to be an important probe of progenitor (and formation pathway).

Pair-instability requires low metallicity

Engine-driven *single-star* models also require low metallicity

Binary models may prefer very dense star clusters

Host population is fainter than normal ccSNe (Neill+2011); has similarities to GRB hosts (Lunnan+2014)

(But the picture is complex!)

PTF SLSN Host Galaxies

2014-08-28

D. Perley

PTF Summer School

PTF SLSN Host Galaxies

Intense, metal-poor starbursts

But also older, metal-rich galaxies

2014-08-28

D. Perley

PTF SLSN Host Galaxies

2014-08-28

D. Perley

PTF Summer School

Operational definition: $M_{peak} < -21 \text{ mag}$

Radiated energy $\sim 10^{51}$ erg (100 x "typical" ccSN)

Multiple classes and subclasses (I, II; R, L)

Producing an SLSN primarily requires efficient extraction of energy to radiation (instead of KE) Efficient Ni56 production (PISN? 50-100 M_{\odot} star?) \rightarrow type R? Interaction with huge amount of CSM ejected recently \rightarrow type lin Central engine (magnetar) \rightarrow type Ic?

43 PTF SLSNe (~6 per year): many more sure to come...!