
Ay 1 – Lecture 2	



Starting the Exploration	





2.1  Distances and Scales	





Some Commonly Used Units	


•  Distance:	



– Astronomical unit: the distance from the Earth to the 
Sun, 1 au = 1.4961013 cm ~ 1.51013 cm  	



– Light year: c 1 yr,  1 ly = 9.463 1017 cm ~ 1018 cm   	


– Parsec: the distance from which 1 au subtends an 

angle of 1 arcsec,                                                               
1 pc = 3.086 1018 cm ~ 3 1018 cm                          
1 pc = 3.26 ly ~ 3 ly                                                          
1 pc = 206,264.8 au  ~ 2105 au 	



•  Mass and Luminosity:	


– Solar mass: 1 M = 1.989 1033 g ~ 2 1033 g  	


– Solar luminosity:  1 L = 3.8261033 erg/s ~ 41033 erg/s 	





The Scale of the Solar System	


Major planets:	


Up to ~ 50 au	



The Oort cloud: ~ 1000 au	



Not to scale! 



Stellar Distances	


Nearest stars ~ a few pc	

 Naked eye visible stars 

~ up to a kpc	



Globular clusters ~ few kpc	





Distances in the Galaxy	


Milky Way diameter ~ 50 - 100 kpc	





Our Extragalactic Neighborhood	


Magellanic 
Clouds ~ 50 kpc	



Virgo cluster 
~ 16 Mpc	



Andromeda galaxy 
(M31) ~ 700 kpc	





The Deep Universe: ~ 1 – 10 Gpc	





Distances and Parallaxes	


•  Distances are necessary in order to convert apparent, 

measured quantities into absolute, physical ones (e.g., 
luminosity, size, mass…)	



•  Stellar parallax is the only direct 
way of measuring distances in 
astronomy!  Nearly everything 
else provides relative distances 
and requires a basic calibration 

•  Small-angle formula applies: 
D [pc] = 1 / π [arcsec] 

•  Limited by the available 
astrometric accuracy (~ 1 mas, 
i.e., D < 1 kpc or so, now) 

π	





How Far Can We Measure Parallaxes? 
Since nearest stars are > 1 pc away, and ground-based 
telescopes have a seeing-limited resolution of ~1 arcsec, 
measuring parallaxes is hard. 

1838: Bessel measured 
π = 0.316 arcsec for 
star 61 Cyg (modern 
value π = 0.29 arcsec) 

Current ground-based: best errors of ~ 0.001 arcsec 



How Far Can We Measure Parallaxes? 
Hipparcos satellite: measured ~105 bright stars with 
          errors also of ~0.001 arcsec 
GAIA satellite: will measure positions of ~109 stars with 
          an accuracy of micro-arcsecs - this is a reasonable 
 fraction of all the stars in the Milky Way! 

Currently: measure D accurately to ~ a few 100 pc 



A parsec is…	


A. Radius of the Earth’s orbit	


B. About 10 27 cm	


C. Angle corresponding to the size of the Earth’s 

orbit from 1 light year away	


D. About 3 1018 cm	


E. About 200,000 astronomical units   	





Distances to stars in our Galaxy range	


A. From ~ 0.001 to ~ 50 kpc	


B. From  ~ 1018 cm to ~ 1023 cm   	


C. From ~ 1 to ~ 700 kpc	


D. From ~ 1,000 to ~ 50,000 astronomical units   	





2.2  Kepler’s Laws, Newton’s Laws, 
and Dynamics of the Solar System	



Kepler’s nested Platonic solids	





Kepler’s Laws:	

 1.  The orbits of planets are 
elliptical, with the Sun at 
a focus	



2.  Radius vectors of planets 
sweep out equal areas 
per unit time	



3.  Squares of orbital 
periods are proportional 
to cubes of semimajor 
axes:	



            P 2 [yr] = a pl 3 [au]	


•    Derived empirically from Tycho de Brahe’s data	


•    Explained by the Newton’s theory of gravity	





Newton’s Laws	


1.  Inertia…	


2.  Force:  F = m a	


3.  Faction = Freaction	



e.g., for a circular motion in grav. field:	


centifugal force = centripetal force 	



•  The law of gravity:	



m V2         m M	

= G	


R              R2	



}	

 Conservation 
laws (E, p, L)	



•  Energy:    Etotal = Ekinetic + Epotential	



m V2	


2	



G m M	


R	



(gravitational)	



•  Angular momentum:  L = m V  R	

 (point mass)	





Motions in a Gravitational Field	


•  Motions of two particles interacting according to the 

inverse square law are conic sections:	



•  Kepler’s 1st law is a direct consequence 	



Unbound:	


Ekin > |Epot|	



Marginally	


bound:	


Ekin = |Epot|	



Bound:	


Ekin < |Epot|	





Why Ellipses?	


A rigorous derivation (in polar coordinates) is a bit tedious, but 
we can have a simple intuitive hint:	



v = vt,	


vr = 0	



v	



v = vt,	


vr = 0	



vr	



vt	



Decompose the 
total velocity v 
into the radial (vr) 
and tangential (vt) 
components	



Consider the total motion as 
a synchronous combination 
of a radial and circular 
harmonic oscillator	


(recall that the period does 
not depend on the amplitude) 	





Orbit Sizes and Shapes	


•  For bound (elliptical) orbits, the size (semimajor axis) depends 

on the total energy:	



•  The shape (eccentricity) of the orbit depends on the angular 
momentum:	



m1	


m2	

 m1	

 m2	



Ekin = 0,  R = 0	

 Ekin = |Epot|,  R ∞	


v	



Ekin  |Epot|	



Circular orbit: 
maximum 
angular 
momentum for 
a given energy	



Radial orbit: 
zero angular 
momentum	



Lmax > L ≠ 0	



L = 0	


Lmax	





Kepler’s 2nd Law:  A quick and simple derivation	



Angular momentum, at any time:  L = Mpl V r = const.	


Thus: V r = const.  (this is also an “adiabatic invariant”)	


Element of area swept:  dA = V r dt	


Sectorial velocity: dA/dt = V r = const.	


Independent of Mpl !	


It is a consequence of	


the conservation of	


angular momentum.	



Planets move slower at the 	


aphelion and faster at the perihelion	



V	



r	





Kepler’s 3rd Law:  A quick and simple derivation	


F cp  = G Mpl M / (apl + a) 2	


        ≈ G Mpl M / apl 2	


(since Mpl << M, apl >> a )	


F cf  = Mpl Vpl

2 / apl	



          = 4 π 2 Mpl apl / P 2	



(since Vpl = 2 π apl / P )	


F cp = F cf         4 π 2 apl 

3 = G M P 2  (independent of Mpl !)	



Another way:    E kin = MplVpl
2 / 2 =  E pot ≈ G MplM /apl	



Substitute for Vpl :  4 π 2 apl 
3 = G M P 2 	



  It is a consequence of the conservation of energy	





It Is Actually A Bit More Complex …	


•  Kepler’s laws are just an approximation: we are treating the 

whole system as a collection of isolated 2-body problems	


•  There are no analytical solutions for a general problem with    

> 2 bodies!  But there is a good  perturbation theory, which 
can produce very precise, but always approximate solutions	


– Discovery of Neptune (1846)	


– Comet impacts on Jupiter	



•   Relativistic effects 
can be used to test 
theory of relativity 
(e.g., precession of 
Mercury’s orbit	





It Is Actually A Bit More Complex …	



•  If you wait long enough, 
more complex dynamics 
can occur, including 
dynamical chaos	



    (Is Solar System stable?)	



•  Dynamical resonances can develop (rotation/revolution periods, 
asteroids; Kirkwood gaps; etc.)	





Kepler’s 3rd law is…	


A. Cubes of orbit sizes ~ squares of orbital periods	


B. Squares of orbit sizes ~ cubes of orbital periods	


C. A consequence of the conservation of energy	


D. A consequence of the conservation of angular 

momentum	





The shape of a closed orbit depends on	


A. Total energy	


B. Total angular momentum	


C. Angular momentum for a given energy	


D. None of the above	





2.3 Celestial 
Coordinate Systems, 
Time Systems, and 
Earth’s Rotation	





The Celestial Sphere	



Think of it as an 
outward projection 
of the terrestrial 
long-lat coordinate 
system onto the sky	



 the Equatorial System	





The Equatorial 
System	



The coordinates are 
Right Ascension 

(RA, or α) and 
Declination (Dec, 

or δ), equivalent to 
the georgaphical 

longitude and 
latitude	



RA = 0 defined by 
the Solar position at 
the Vernal Equinox	





The Seasonal Change of the Solar 
Declination	





Annual Solar Path	





The Alt-Az Coordinate System	


It is obviously 
location-dependent	



Most telescopes 
nowadays are built 

with Alt-Az 
mounts	





Other Common Cellestial 
Coordinate Systems	



Ecliptic:  projection of the Earth’s orbit plane defines the 
Ecliptic Equator.  Sun defines the longitude = 0.	



Galactic:  projection of the mean Galactic plane is close 
to the agreed-upon Galactic Equator; longitude = 0 
close, but not quite at the Galactic center.   (α,δ) → (l,b)	





Ecliptic (Blue) and Galactic Plane (Red)	





Synodic and Sidereal Times	


Synodic = relative to the Sun	


Sidereal = relative to the stars	



As the Earth goes around the Sun, it makes an extra turn.  Thus:	


Synodic/tropical year = 365.25 (solar) days	


Sidereal year = 366.25 sidereal days = 365.25 solar days	



Universal time, UT = relative to the Sun, at Grenwich	


Local Sidereal Time (LST) = relative to the celestial sphere	



= RA now crossing the local meridian (to the South) 	





•  The Earth’s rotation axis 
precesses with a period of 
~ 26,000 yrs, caused by the 
tidal attraction of the Moon 
and Sun on the the Earth’s 
equatorial bulge	



•  There is also nutation 
(wobbling of the Earth’s 
rotation axis), with a period 
of ~ 19 yrs	



•  Coordinates are specified 
for a given equinox (e.g., 
B1950, J2000) and 
sometimes epoch	



The Precession of the Equinoxes	





Earth’s Orbit, Rotation, and the Ice Ages	


Milankovich  Theory:   cyclical  variations  in  Earth-Sun 

geometry combine to produce variations in the amount 
of solar energy that reaches Earth, in particular the ice-
forming regions: 	


1.  Changes in obliquity (rotation axis tilt)	


2.  Orbit eccentricity	


3.  Precession	



These variations 
correlate well with 
the ice ages!	





The change of seasons is due to…	


A. The tilt of the Earth’s rotation axis relative 

to the celestial equator	


B. The tilt of the Earth’s rotation axis relative 

to the plane of the ecliptic	


C. Eccentricity of the Earth’s orbit	


D. Precession of the equinoxes	


E. Human sacrifices	






