

The Earliest Known Drawing of a Telescope

Giovanibattista della Porta included this sketch in a letter written in August 1609

The Earliest Known Drawing of a Telescope

Giovanibattista della Porta included this sketch in a letter written in August 1609

Galileo's telescope (1609),

Newton's telescope (1671),

Modern Telescope Mirror Designs

- Lightweight honeycomb structures
- Thin meniscus (+ active optics)
- Segmented (all segments parts of the same conic surface); e.g., the Kecks, TMT
- Multiple (each mirror/segment a separate telescope, sharing the focus); e.g., HET, SALT
- Liquid, spinning

The critical issues:

- Surface errors (should be $< \lambda/10$)
- Active figure support (weight, thermal)
- Thermal equilibrium (figure, seeing)

← HST mirror

Keck segment →

← VLT mirror cell

The Large Synoptic Survey Telescope (LSST)

- 8.4m primary, 3-mirror modified Paul-Baker design, effective aperture 6.9m, f/1.25
- FOV ~ 3.5 deg, will cover $\sim 1/2$ sky
- Time domain astronomy, largescale weak grav. lensing survey

- Multiple 10s exposures, *grizy* filters, 3 Gigapixel camera
- Data rate ~ 30 TB/night, ~ 6
 PB/yr
- First light ~ 2018?

The TMT Conceptual Design

• 30-meter filled aperture mirror

• 738 segments of 1.2m diameter,

4.5cm thick

• Alt-azimuth mount

• Aplanatic Gregorian-style design

• f/1 primary, f/15 final focus

• Very AO-intensive

• Field of View = 20 arcmin

• Instruments located at Nasmyth foci, multiple instruments on each Nasmyth platform addressable by agile tertiary mirror

First light ~ 2018?

The Giant Magellan Telescope (GMT)

- 7 X 8.4m Segments
- 18m focal length
- f/0.7 primary
- f/8 Gregorian focus
- 21.4m equiv. collecting area
- 24.5m equiv. angular resolution
- 20-25' FOV

Night in America

Space Observatories From IR to UV

Basic Optics: Refraction

Index of refraction:

$$\mathbf{n}(\lambda) = \mathbf{c} / \nu(\lambda)$$

e.g.,
$$n_{air} \approx 1.0003$$
,
 $n_{water} \approx 1.33$, $n_{glass} \sim 1.5$, etc.

Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

If $\sin \theta_2 = 1$, then we have a total internal reflection for $\theta_1 > \sin^{-1}(n_2/n_1)$; e.g., in optical fibers

Index of Refraction of the Air

Cauchy's approximate formula:

$$n_{air} = 1.000287566 + (1.158102 \times 10^{-9} \text{ m}/\lambda)^2 + O(\lambda)^4$$

 $\rightarrow \sim 5 \times 10^{-6} \text{ in visible light}$

Thus, $\Delta \lambda / \lambda \sim 3 \times 10^{-4}$ in visible light $\sim 1 - 3 \text{ Å}$

Beware of the air vs. vacuum wavelengths in spectroscopy! Traditionally, wavelengths ≥ 3000 (2800?) Å are given as air values, and lower than that as vacuum values. Sigh.

It is a function of density and temperature. Thus,

Turbulence → Refractive Scintillation → Seeing

→ The need for AO!

Lenses and Refractive Optics

No longer used for professional telescopes, but still widely used within instruments

Focal length

Lensmaker's Formula

Using the Snell's law, it can be shown that

$$1/f = (n-1) (1/R_1 + 1/R_2)$$

(aka the "lens power")

where:

f = focal length R_1 , R_2 = curvature radii of the two lens surfaces

Note that for a spherical mirror, f = R/2

Magnification and Image Scale

$$y = f \tan \theta \approx f \theta$$

scale: $dy/d\theta = 1/f$

Image Deterioration

(spherical aberation, coma, astigmatism)

Image Distortion

(Petzval field curvature, pincushion, barrel distortion)

Spherical aberration:

Simple Reflecting Telescopes

Spherical surface suffers from spherical aberration – rays hitting the outside of the dish come to focus at a different point on the optical axis from those hitting the center.

Paraboloidal reflector brings all rays to focus at the same point on the optical axis, and eliminates spherical aberration.

Palomar Hale 200-inch Telescope

Diffraction-Limited Imaging (an ideal telescope)

The Airy function

~ a Fourier transform of the actual open telescope aperture $FWHM = 1.22 \lambda/D$

In reality, it tends to be more complex, due to the mirror geometry, etc. Also, from the ground, the resolution is generally limited by the seeing, plus the instrument optics, etc.

Optical Consequences of Turbulence

- Temperature fluctuations in small patches of air cause changes in index of refraction (like many little lenses)
- Light rays are refracted many times (by small amounts)
- When they reach telescope they are no longer parallel
- Hence rays can't be focused to a point:

Parallel light rays

Light rays affected by turbulence

Schematic of Adaptive Optics System

Atmospheric turbulence

Light From

Deformable mirror

Feedback loop: next cycle corrects the (small) errors of the last cycle

But you need a bright star very close to your target (a few arcsec) in order to compute the correction

Keck AO System Performance

If there's no close-by bright star, create one with a laser!

Galaxy Star 💥 **Turbulence Deformable Mirror** Telescope **Detector** Use a laser beam to create an artificial "star" at altitude of ~ 100 km (Na layer, Na D doublet)

3.3 Detectors (UV, Visible and IR)

Evolution of Astronomical Detectors

- Historical evolution: Eye → Photography → Photoelectic (single-channel) devices → Plate scanners → TV-type imagers → Semiconductor-based devices (CCDs, IR arrays, APDs, bolometers, ...) → Energy-resolution arrays (STJ, ETS)
- Astronomical detectors today are applications of solid state physics
- **Detector characteristics:** Sensitivity as a $f(\lambda)$, size, number of pixels, noise characteristics, stability, cost
- **Types of noise:** Poissonian (quantum), thermal (dark current, readout), sensitivity pattern
- Quantum efficiency: QE = N(detected photons)/N(input photons)
- Detective Quantum Efficiency: $DQE = (S/N)_{out}/(S/N)_{in}$

Old Stuff: Photomultiplier Tubes

Figure 1.1.19. Schematic arrangement for a photomultiplier.

Solid-State Detector Technologies

2-D focal plane arrays :

- Optical silicon-based (CCD, CMOS)
- Infrared IR material + silicon CMOS multiplexer

But Nowadays, Charge Coupled Devices (CCDs) Are The Detectors of Choice (in visible, UV, and X-ray)

A whole bunch of CCDs on a wafer

Nearly ideal detectors in many ways Counting photons in a pixel array

Five Basic Steps of Optical/IR Photon Detection

- 1. Get light into the detector: need anti-reflection coatings
- 2. Charge generation: popular materials include Si, HgCdTe, InSb
- 3. Charge collection: electrical fields within the material collect photoelectrons into pixels.
- **4. Charge transfer:** in IR, no charge transfer required. For CCD, move photoelectrons to the edge where amplifiers are located.
- 5. Charge amplification & digitization: This process is noisy. In general, CCDs have lowest noise, CMOS and IR detectors have higher noise.

How Does A CCD Work?

Internal Photoelectric Effect in Doped Silicon

- Incoming photons generate electron-hole pairs
- That charge is collected in potential wells applied on the surface

- Thermally generated electrons are indistinguishable from photogenerated electrons → Dark Current → keep the CCD cold!
- Silicon is transparent to photons with E < 1.26eV ($\lambda \approx 1.05 \mu m$)
- → Red Cutoff! Need a different type of detector for IR ...

How Does A CCD Work?

A grid of electrodes establishes a pixel grid pattern of electric potential wells, where photoelectrons are collected in "charge packets"

Reading Out A CCD: Shift the electric potential pattern by clocking the voltages - pixel positions shift

Charge packet from subsequent pixel enters from left as first pixel exits to the right.

Pattern of collected electrons (= an image) moves with the voltage pattern, and is read out

IR (Hybrid) Arrays Not like CCDs!

Each pixel is read out through its own transistor.

Figure 6.1. Infrared direct hybrid array.

Typical materials: HgCdTe, InSb, PtSi, InGaAs

CMOS Imagers

- CMOS = Complementary Metal Oxide Semiconductor; it's a process, not a particular device
- Each pixel has its own readout transistor. Could build special electronics on the same chip. Can be read out in a random access fashion.
- Noisier, less sensitive, and with a lower dynamical range than CCDs, but much cheaper; and have some other advantages
- Not yet widely used in astronomy, but might be (LSST?)

The Future: Energy-Resolving Arrays

Superconducting Tunnel Junctions (STJ), And Transition-Edge Sensors (TES)

Bolometers

- Measure the energy from a radiation field, usually by measuring a change in resistance of some device as it is heated by the radiation
- Mainly used in FIR/sub-mm/microwave regime

Single Dish (the bigger the better) ...

The Green Bank Telescope (GBT), D = 100 m 1

Arecibo, D = 300 m

... and Interferometers

They achieve the angular resolution corresponding to the largest baseline between the elements (dishes),

but the collecting area is just the sum ...

How a Radio Telescope Works

20cm

3mm

feed pedestal

A radio telescope reflects radio waves to a focus at the antenna. Because radio wavelengths are very large, the radio dish must be very large.

... how interferometer works ...

Signals from individual elements are delayed electronically, in order to simulate a flat wavefront, for slightly different arrival directions - thus mapping a field of view.

Very Long Baseline Interferometry (VLBI)

- Antennas very far apart (~ Earth size)
 - ★ Resolution very high: milli-arcsec
- Record signals on tape, correlate later
- Now VLBA(rray)

VLBI INTERFEROMETER

No direct link between stations and correlator

The Future: Square Kilometer Array (SKA)

The Birth of X-Ray Astronomy: Rocket Flight (1962)

Looked for the X-rays from the Moon; did not detect them, but discovered the first extrasolar X-ray source (Sco X-1) and the Cosmic X-Ray Background, leading to the Nobel Prize for Giacconi in 2002

Figure 2. The first observation of Sco X-1 and of the x-ray background in the June, 12, 1962 flight. From Giacconi, et al., 1962.

Compton
Gamma-Ray
Observatory

X-Ray and Gamma Ray Detectors

- Proportional counters
- Scintillation crystals
- X-ray CCDs
- Solid state CdZnTe arrays

Air Cerenkov detectors

Detecting Ultra-High Energy Gamma Rays

High-Energy Gamma-Ray (Cherenkov) Telescopes

High-Energy Cosmic Rays: Atmospheric Showers

High-Energy Cosmic Rays

The cosmic ray
spectrum stretches
over some 12 orders of
magnitude in energy
and some 30 orders of
magnitude in
differential flux!

Pierre Auger Observatory concept

Milagro:

Neutrino Detectors

IceCube Neutrino Observatory @ South Pole

