
Ay1 – Lecture 17	


The Expanding Universe	



Introduction to Cosmology	





17.1 The Expanding Universe	







General Relativity (1915)	


•  A fundamental change in viewing the physical space and time, 

and matter/energy	


•  Postulates equivalence among all frames of reference 

(including accelerated ones)	


•  Introduces curvature of space, predicts a number of new effects: 	



o  Light deflection by masses	


o  Gravitational redshift	


… etc.	



Presence of mass/energy determines the geometry of space	


Geometry of space determines the motion of mass/energy	


GR is essentially the modern theory of gravity on large scales.	


Since gravity is the only important force on cosmological scales, 
GR is the theoretical basis of modern cosmology 	





Discovery of the Expanding Universe	



V = H D	


The Hubble’s law:	



Based on an early work byVesto Melvin Slipher ->	


< - Edwin Hubble discovered 
that galaxies recede from us 
with a velocity that is 
proportional to the distance	



Velocity	

 Distance	


Hubble’s constant	



The Hubble diagram ->	





Expansion of the Universe 

The space itself expands, and carries galaxies apart	


In a homogeneous, isotropic universe, there is no preferred center	



D1 + ΔD1 	

 D2 + ΔD2 	
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D1  	


t + Δt	



t 	



ΔD ~ D 	


V = ΔD/Δt ~ D 	





The Cosmological Principle	


Relativistic cosmology uses some symmetry assumptions 
or principles in order to make the problem of “solving the 
universe” viable.   The Cosmological Principle states that 

At each epoch, the universe is the same at all locations 
and in all directions, except for local irregularities 

Therefore, globally the Universe is assumed to be 
homogeneous and isotropic at any given time; and its 
dynamics should be the same everywhere 
Note: the Perfect Cosmological Principle states that the Universe 
appears the same at all times and it is unchanging  - it is also 
homogeneous in time - this is the basis of the “Steady State” model 



Homogeneous 
but not Isotropic	



Isotropic but not 
Homogeneous	



Isotropic and 
Homogeneous	



Homogeneity and Isotropy	



This simplifies the modeling, since only the radial coordinate 
matters, and the density of any mass/energy component is the 
same everywhere at a given time 	



(in space, but not in time)	





So, is the Universe Really 
Homogeneous and Isotropic?	



Globally, on scales larger than ~ 100 Mpc, say, it is - so the 
cosmological principle is valid	



Distribution on the sky  
of 65000 distant radio 
sources from the Texas 
survey, a cosmological 
population	



… and of course the CMBR, 
uniform to better than ∆T/T < 10-5, 
after taking the dipole out	





So, is the Universe Really 
Homogeneous and Isotropic?	



But not so on scales up to ~ 100 Mpc, as shown by the	



… and that is OK	



large-scale 
structure	





Expansion Relative to What?���
Comoving and Proper Coordinates	



There are fundamentally two kinds of coordinates in a 
GR cosmology:	



•  Comoving coordinates = expand with the universe	


Examples:	


–  Unbound systems, e.g., any two distant galaxies	


–  Wavelengths of massless quanta, e.g., photons	



•  Proper coordinates = stay fixed, space expands relative 
to them.  Examples:	


–  Sizes of atoms, molecules, solid bodies	


–  Gravitationally bound systems, e.g., Solar system, stars, 

galaxies …	





Expansion into What?	


Into itself.  There is nothing “outside” the universe	



(Let’s ignore the multiverse hypothesis for now) 	



In either case, there is no “edge”, and there is no center	


(homogeneity and isotropy)	



A flat or a negative curvature universe 
is infinite in all directions; the 
comoving coordinate grid stretches 
relative to the proper coordinates 	



A positive curvature universe is like 
the surface of a sphere, but in one extra 
dimension.  Its volume is finite, but 
changes with the expansion of space 	





The Cosmological Redshift	





Redshift as Doppler Shift	





Cosmological Redshift	


A more correct approach is to note that the wavelengths 
of photons expand with the universe:	



The two approaches are actually equivalent	



Where R(t) is a separation between 
any two comoving points	



We get:	



Thus, by measuring redshifts, we measure directly how 
much has the universe expanded since then	





Is Energy Conserved in an Expanding 
(or Contracting) Universe?	



•  Consider energies of photons	


•  Consider potential energies of unbound systems	



No!	





?	





17.2  Cosmological Models	





The Early Cosmological Models	


Einstein in 1917 constructed the first 
relativistic cosmological models.  Thinking 
that the universe is static, he introduced the 
cosmological constant term to balance the 
force of gravity.  This model was unstable.	



Willem De Sitter in 
1917 also developed a 
similar model, but also	



obtained solutions of Einstein equations 
for a nearly empty, expanding universe.	



In 1932, Einstein & De Sitter jointly 
developed another, simple cosmological 
model which bears their names.	





The Friedmann and Lemaitre Models	


ï  Alexander Friedmann	



In 1922 developed the GR-based, expanding 
universe model.  It was not taken very 
seriously at the time, since the expansion of 
the universe has not yet been established.	



Georges Lemaitre  	


In 1927 independently developed cosmological 
models like Friedmann’s.  In 1933, he “ran the 
film backwards” to a hot, dense, early state of the 
universe he called “the cosmic egg”.  This early 
prediction of the Big Bang was largely ignored.	



They used the homogeneity and isotropy to reduce the full set of 
16 Einstein equations of GR to one: the Friedmann-Lemaitre eqn.	





Kinematics of the Universe	


We introduce a scale factor, 
commonly denoted as R(t) or a(t): 
a spatial distance between any two 
unaccelerated frames which move 
with their comoving coordinates	



This fully describes the evolution of 
a homogeneous, isotropic universe	



R(t)	



t	



Computing R(t) and various derived quantities defines the 
cosmological models.  This is accomplished by solving the 
Friedmann (or Friedmann-Lemaitre) Equation	



The equation is parametrized (and thus the models defined) by 
a set of cosmological parameters	





Geometry and the Fate of the Universe	


Matter and energy content of the universe determines its geometry 

(curvature of space), and the ultimate fate	



ρ < ρcrit, k = −1 	


negative curvature	


expands for ever	



ρ  = ρcrit,  k = 0	


flat (Euclidean) 	


expands for ever	



ρ > ρcrit, k = +1  	


positive curvature	


collapses	



Possible expansion histories: 	





Cosmological Parameters	


Cosmological models are typically defined through several 
handy key parameters:	





Hubble Constant Defines the Scale 
of the Universe	



R0	



t0	

0	



H0 = slope at t0	



1 / H0 = Hubble time	



{

c / H0  = Hubble length	





Cosmological Parameters	





Cosmological Parameters	





Cosmological Parameters	



R0	



t0	

0	



H0 defines the 
spatial and 
temporal scale 
of the universe	



1 / H0 = Hubble time	



{

c / H0  = Hubble length	



The other 
parameters (Ωx) 
determine the 
shape of the 
R(t) curves	





Cosmological Parameters	


A few notes:	



The Hubble parameter is usually called the Hubble 
constant (even though it changes in time!) and it is often 
written as:	


h = H0 / (100 km s-1 Mpc-1), or h70 = H0 / (70 km s-1 Mpc-1)	



The current physical value of the critical density is	



ρ0,crit = 0.921 10 -29 h70
2  g cm-3	



The density parameter(s) can be written as:	


Ωm + Ωk + ΩΛ = 1	



        where Ωk  is a fictitious “curvature density”	





Evolution of the Density	



•  Matter dominated (w = 0):   ρ ~ R-3 	


•  Radiation dominated (w = 1/3):   ρ ~ R-4	


•  Cosmological constant (w = –1):  ρ = constant	


•  Dark energy with w < –1 e.g., w = –2:   ρ ~ R+3	



–  Energy density increases as is stretched out!	


–  Eventually would dominate over even the energies 

holding atoms together! (“Big Rip”)	



Densities of various matter/energy components change with the 
stretching of the volume (~ R3) according 
to their equation of state (EOS): 
where w is the EOS parameter (need not be constant): 

In a mixed universe, different components will dominate the 
global dynamics at different times	



ρ ~ R-3(w+1)  



Models With Both Matter & Radiation	
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However, to a good approximation, 
we can assume that k = 0 and either 
radiation or  matter dominate 
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What is Dominant When?	


Matter dominated (w = 0):   ρ ~ R-3 	


Radiation dominated (w = 1/3):   ρ ~ R-4	


Dark energy (w ~ –1):  ρ ~ constant	



•  Radiation density decreases the fastest with time 	


–  Must increase fastest on going back in time	


–  Radiation must dominate early in the Universe	



•  Dark energy with  w ~ –1 dominates last; it is the dominant 
component now, and in the (infinite?) future	



Radiation  
domination 

Matter  
domination 

Dark energy  
domination 



Pure Λ	


       	



←High density	





?	





17.3  Distances in Cosmology	





The Basis of Cosmological Tests	


R(t)/R0  = 

1/(1+z)	


1	



t	

t0 
now	



0	


Big bang	



D(z)	


~ c [t0-t(z)]	



0	


now	



z	



Big bang 
at  z = ∞	



All cosmological tests essentially consist of comparing 
some measure of (relative) distance (or look-back time) 
to redshift.  Absolute distance scaling is given by the H0.	





Distances in Cosmology	


A convenient unit is the Hubble distance,	



DH = c / H0 = 4.283 h70
-1 Gpc = 1.322Î1028 h70

-1 cm	


and the corresponding Hubble time,	



tH = 1 / H0 = 13.98 h70
-1 Gyr = 4.409Î1017 h70

-1 s	



At low z’s, distance D ≈ z DH .  But more generally, 
the comoving distance to a redshift z is:	



where	





Comoving 
Distance	



Ωm = 1,	


ΩΛ = 0	



Ωm = 0.05,	


ΩΛ = 0	



Ωm = 0.2,	


ΩΛ = 0.8	



Derived by 
solving the 
Friedmann- 
Lematre eqn. 
for a particular 
choice of 
cosmological 
parameters 	





Luminosity Distance	


In relativistic cosmologies, observed flux (bolometric, or in a 
finite bandpass) is:	



  f = L / [ (4π D2) (1+z)2 ] 	



One factor of (1+z) is due 
to the energy loss of 
photons, and one is due to 
the time dilation of the 
photon rate.	



A luminosity distance is 
defined as DL = D (1+z),  
so that  f = L / (4π DL

2)	



Ωm = 1,	


ΩΛ = 0	



Ωm = 0.05,	


ΩΛ = 0	



Ωm = 0.2,	


ΩΛ = 0.8	





Angular Diameter Distance	


Angular diameter of an object with a fixed comoving size X is by 
definition θ = X / D	


A fixed proper size X is 
(1+z) times larger than in 
the comoving coord’s,   
so its angular diameter 
will be θ = (1+z) X / D	


We define the angular 
diameter distance	


DA = D / (1+z) , so that 
the angular diameter of  
an object whose size is 
fixed in proper coord’s is 
θ = X / DA	



Ωm = 1,	


ΩΛ = 0	



Ωm = 0.05, ΩΛ = 0	



Ωm = 0.2,	


ΩΛ = 0.8	





Age and Lookback Time	


The time elapsed since some redshift z is:	



Generally it has to be 
integrated numerically, 
except in special cases	



Integrating to infinity 
gives the age of the 
universe, and the 	


difference is the age at 
a given redshift	



Ωm = 1, ΩΛ = 0	



Ωm = 0.05, ΩΛ = 0	



Ωm = 0.2, ΩΛ = 0.8	





Cosmological Tests: Expected Generic 
Behavior of Various Models	



R(t)	



t	

| 
t0	



0	



R(t)/R0	



 t - t0	


0	



Models with a lower density and/or positive Λ 
expand faster, are thus larger, older today, have 
more volume and thus higher source counts, at a 
given z sources are further away and thus 
appear fainter and smaller	



Models with a 
higher density 
and lower Λ 
behave exactly 
the opposite	





?	




