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What does a nheutron star look like?

How big is a neutron star?
About 20-30 km in diameter

How massive is a heutron
star?

Around |-2 solar masses

What is a neutron star made of? Nuclear densities

. mass M 2%x10¥ ¢ 5 1014 g
P volume 4. p3 3 MK cm?
7R 4 X (105 cm)
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Neutron stars as probes of
fundamental physics!

Weber+(2007)
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The physics of compact binary mergers

G,, = 8T, v, T" =0
General relativity Hydrodynamics
p=p(pTY, V F¥ = 4z 7" nop+e +0,

Nuclear physics Electrodynamics WWeak interactions
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Modeling compact binary mergers

General relativity 1s very hard to solve using analytical
tools, especially when matter 1s dynamically important.
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High-performance computing

General relativity 1s very hard to solve using analytical
tools, especially when matter 1s dynamically important.

Numerical relativity solves Einstein field equations &
magnetohydrodynamics on supercomputers.
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High-performance computing

General relativity 1s very hard to solve using analytical
tools, especially when matter 1s dynamically important.

Image credit: Gigabyte

New era of computing: GPUs

Current applications show speed-up of > 10 X



High-performance computing

General relativity 1s very hard to solve using analytical
tools, especially when matter 1s dynamically important.

Simulation by grad student Haiyang Wang

Image credit: Gigabyte

New era of computing: GPUs

Current applications show speed-up of > 10 X
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Late stage gravitational wave emission
leads ko msp&rat and merqger!
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Animations: Breu et al.




The final fate of a neutron star binary
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The final fate of a neutron star binary
”" Gravitational waves
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First direct detection of
a gravitational wave signal
from neutron star coalescence
happened only in 2017. VCH2017]
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Image credit: france.fr

Tidal deformation correlates
with the size of neutron stars.
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http://france.fr

The final fate of a neutron star binary
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How large can neutron stars be? o
e.g. Annala+, De+, ERM+ (PRL 2018). Constraining neutron star

Chatziioannou+, Raithel+ and many others radii Wlth gravitaticnal
+ X-ray constraints: Riley+, Miller+, . .
Raaijmakers+, Dietrich+ and others! waves from the InSPIr'aI.



The final fate of a neutron star binary

Gravitational waves
M Neutron star

| mergers as
cosmic colliders?

EWH 70817 |

0 GNH3, M =1.350M

Can these events
reveal extreme
states of matter?
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Image credit: GSI ERM+(PRD 2023)
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Comparison with Au+Au collision!
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Probing exotic states of matter
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Systematically probing dense matter
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Nuclear theory Numerical relativity
simulations \ #

/ GNH3, M =1.350M,

Observables

Can we systematically survey dense matter imprints?
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Systematically probing dense matter

|
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Nuclear theory Numerical relativity
simulations \ #

Observables

Breakthrough computing:
Modular Unified Solver

of the Equation of State https:/musesframework.io



https://musesframework.io

The final fate of a neutron star binary

”" Gravitational waves
GV 70817 ||

" GNH3, M =1.350M

The lifetime of the system
depends on different physics
(magnetic fields, neutrinos,

Tuojin Yin nuclear physics...) Ylin&Mc))st
(CalBridge/WAVE Fellow 2023) (Inprep

New insights needed!
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The final fate of a neutron star binary
M Gravitational waves
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Collapse or no collapse?

THE ASTROPHYSICAL JOURNAL LETTERS, 892:L3 (24pp), 2020 March 20 https://doi.org/10.3847/2041-8213 /ab75f5

© 2020. The Author(s). Published by the American Astronomical Society. T T T | T T T T | T T T T
CrossMark \m
GW190425: Observation of a Compact Binary Coalescence with Total Mass ~ 34Mg ol ——

B. P. Abbott', R. Abbott', T. D. Abbott’, S. Abraham’, F. Acernese™”, K. Ackley®, C. Adams’, R. X. Adhikari', V. B. Adya®,

?

My

11 12
R [km]

?

—p

Tootle+(including ERM; ApJL 2021)

see also: Bauswein+, Koppel+, Kdlsch+, Perego+
and others

Answering this question can give crucial insights
into neutron star properties.
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The final fate of a neutron star binary

M Gravitational waves
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" GNH3, M =1.350M

The multi-messenger picture

Electromagnetic counterparts as

new windows into the physics of

the merger!



http://iStock.com

The final fate of a neutron star binary
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The multi-messenger picture
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*Mass ejecta are a site for heavy
element production.
(r-process nucleosynthesis)
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Mass ejection

Dynamical mass ejection
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The final fate of a neutron star binary
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The multi-messenger picture
LVC+(2018) sGRB

GIRIBTI 706 7/

*Coincident
short gamma-ray burst (sGRB)

detection ~2s after merger!
LVC+(2018)

*Consistent with off-axis
viewed structured jet

emission Alexander+(2018)
Gottlieb+(2018)

Elias R. Most



Do all mergers feature jet launching?

sGRB
Magnetization
Big picture
question:
How does a
Tov examble! jetlaunchin
lergc?gzrg)cli@?fg:s%grﬂ\tr(incl.ERM, ASA 2019) y bie the merger?
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Do all mergers feature jet launching?

*Leverage availability of large-
scale GPU resources for ultra-
high resolution simulations!

Image Credit: NERSC

Northwestern
Postdoc

Halevi, ERM, Stone (in prep) see also Christie+, Liska+, Gottlieb+, Jacquemin-lde+

Goni Halevi
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News from the frontier: An unlikely enginel

What’s the engine behind
gamma-ray bursts in mergers?

Black hole!

Mosta et al 2020

Paschalidis et al 2015; Ruiz et al.

Hypermassive neutron star?

Can we also get sGRBs from neutron
stars? What'’s the expected fraction?
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Gamma-ray bursts from stellar remnants?

Not a magnetar, but strong

constraints on BH-disk engine Combi & Siegel 2023 ERM & Quataert 2023

ERM 2023

Kiuchi et al 2023

Gottlieb+2023

Major
breakthroughs

in numerical relativity this year! Curtis+ 2023; de Haas+2023
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The final fate of a neutron star binary
”" Gravitational waves sGRB
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Magnetospheric transients
Flares (Non-linear) Alfven waves

Mahimann+(incl. ERM, 2023) _—
see also Parfrey+, Carrasco+, Sharma+ Yugps2020), (incl. ;lﬁ, .
7 i N
= = 4 .
Balding transients gonany Interactions.
, N
| A\

\
4 : |

> @

,
ERM+(2018),Nathanail, ERM+(2017) N \\1 - B . /
see also Lehner+, Palenzuela,Dionysopoulou+ ERM, Philippov (20£3%%@822a-hain prece

see also Palenzuela+, PasStiamens?,Ponce+, East+, Carrasco+
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Observational prospects

Callister+ (2019)

Need better predictions and theory!
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Magnetospheric dynamics
prior to merger

N\




Magnetospheric dynamics
prior to merger

P!
Lo

Corotating frame

ERM & Philippov
(ApJL 2020)
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Radio transients from flares?

ERM,Philippov
(ApJL 2020)
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ERM & Philippov
(Physical Review
Letters 2023)
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Leveraging numerical advances

Spectral methods:
Apply leading tools from binary black hole coalescence to
magnetospheric problem!
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Computational
relativistic astrophysics
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Need a multi-scale, multi-physics approach to interpret
multi-messenger events!
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Caltech

Theoretical Astrophysics
Including Relativity
(TAPIR)

Resnick High-Performance
Computing Center

Applied Physics and Geological and Planetary
Materials Science Sciences
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Computational relativistic astrophysics

: Spacetime Explosive
Multi-messenger : :
dynamics transients
: Relativistic
Black hole accretion Magnetospheres Relativistic
outflows
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Why a computational approach?
Computational approach needed

. Spacetime
dynamics

D aeaiven

need for
accuracy!

Image credit: Vitale+2021
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Computational challenges

Non-linear interplay of physics at different scales!
Non-linear dynamics No symmetries

Image credit: Burrows

complex equations Image credit: Nordhaus
Multi physics
Image credit: Pastor-Marcos+23 Image credit: Richers
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Choosing the right approach

Black hole accretion for collisionless plasma

pouf+ (aFg +T5p* ) P, = € If

Six dimensional phase spacel
Can't possibly solve this directly? Image credit: EHT

Event Horizon Telescope image
sourced by gas dynamics

e Different accretion regimes?
e Precise history of gas???
e Plasma scales???

* |Imprints of space time can be
highly degeneratel

Image credit: Wong
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A stimulation based \/LCWPDLWC!



Choosing the right approximation

Image credit: Hakobyan

Hydrodynamics:
Inexpensive, no magnetic fields, global features wrong
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Choosing the right approximation

Image credit: Hakobyan

Magnetohydrodynamics:
Inexpensive, global features about right. Emission features?
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Choosing the right approximation

Image credit: Hakobyan

Hybrid particle-in-cell:
Expensive, global features about right, electron fluid; relativity?!
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Choosing the right approximation

Image credit: Hakobyan

Force-free electrodynamics:
Cheap, gets global dynamics of the jet ok, no disk accretion
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Choosing the right approximation

Image credit: Hakobyan

Spectral methods:
Complicated! Very hard to do for fluid problems/shocks. BUT...
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Choosing the right approximation

Spectral methods:
Work extremely well for black holes and gravitational waves!
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Choosing the right approximation

Image credit: Hakobyan

Particle-in-cell (Monte-Carlo-type sampling approach):
Extremely expensive! Includes all the physics. Scale separation...?
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Choosing the right approximation

Image credit: Hakobyan

Vlasov Solver (Brute force Gthasgrspa ): Sarah Habib

Extremeﬁg%gﬁf%qﬁo%%qtqe%wag K'f al problems?



Choosing the right approximation

Image credit: Hakobyan

Sarah Habib

How accurate can a computer draw?
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Choosing what is feasible!

Magnetic flux

Black hole

For conducting background
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Black hole accretion

Develop current
sheet within
ergosphere.

Dynamics governed by
magnetic reconnection!

Parfrey+(2019)

Observational signatures
and time scales can be
influenced by reconnection dynamics

Elias R. Most

Bransgrove+(2019)



Black hole accretion

Ripperda+(2021)
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A new take on collapsing neutron stars

Hypermassive neutronstars | ifetime can be up to ~ 1 day
formed in mergers eventually Ravi & Lasky 2014

collapse to black holes

98- (e

Essentially Oppenheimer-Snyder with magnetic fields!
Thorne (1971), Price (1972), Baumgarte & Shapiro (2003)
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Radio bursts after merger?

Recent interest due to claimed association of radio
bUI"StS With neutron star mergers Moroianu+(2023); Rowlinson+(2023)

Caveat: Dense ejecta environment...  Bhardwadj+(2023), Radice+(2023)

Radiof) Rowlinson+ (2023) Moroianu+(2023)

| What happens following the collapse?
GRB201006A GW190425

) —

ERM+ (ApJ 2018), see also Baumgarte+, Palenzuela+, Lehner+
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EM burst from collapsing neutron stars

Numerical relativity +

0"

Neutron star X-Ray?

Radio?

Toy model +
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EM burst from collapsing neutron stars

Plasma has large but
finite conductivity.

Wave stumbles, forms
monster radiative shock!

Beloborodov (2023)

Elias R. Most



Gamma ray bursts delayed by a day?!
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ERM, Beloborodov, Ripperda (in prep)
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Computational relativistic astrophysics

: Spacetime Explosive
Multi-messenger : :
dynamics transients
: Relativistic
Black hole accretion Magnetospheres Relativistic
outflows
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Computational Relativistic Astrophysics

Questions?

Visit us at Gahill 308!



