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Outline

l Belief
l Bayes Theorem
l Choice of priors
l Model selection 
l MLE
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A matter of belief

l What is the mean height of people in the room?
l What are the confidence intervals on this?
l What does this mean?

Frequentist:
l The range in which the mean will occur 95% 

of the time with repeated sampling

Bayesian:
l The interval in which 95% of the population 

lies
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Bayes Problem

“Let us then imagine a person present at the drawing of a lottery, who 
knows nothing of its scheme or of the proportion of Blanks to Prizes in it. Let 
it further be supposed, that he is obliged to infer this from the number of 
blanks he hears drawn compared with the number of prizes; and that it is 
enquired what conclusions in these circumstances he may reasonably make.

Let him first hear ten blanks drawn and one prize, and let it be enquired 
what chance he will have for being right if he guesses that the proportion of 
blanks to prizes in the lottery lies somewhere between the proportions of 9 
to 1 and 11 to 1”

An Essay towards solving a Problem in the Doctrine of Chances
Rev. T. Bayes (1763)
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Bayes Problem

l Probability of winning, p, is a random variable in [0, 1]
l The result of each draw, Xi, is conditional on p:

𝑝 𝑋 = 1 = 𝑝 for a prize and 𝑝 𝑋 = 0 = 1 − 𝑝 for a blank
l After n+m draws, there will be m prizes and n blanks:

𝑓 𝑛,𝑚 =
𝑛 +𝑚 !
𝑛!𝑚!

𝑝! 1 − 𝑝 " =
𝑛 +𝑚
𝑚

𝑝! 1 − 𝑝 "

l The chance that p lies between two values a and b:

𝑃 𝑎 < 𝑝 < 𝑏 𝑚, 𝑛 =
∫#
$ 𝑛 + 𝑚

𝑚 𝑝! 1 − 𝑝 "𝑑𝑝

∫%
& 𝑛 + 𝑚

𝑚 𝑝! 1 − 𝑝 "𝑑𝑝

l For a = 1/11, b = 1/9, m = 1 and n = 10, p ~ 0.077

“there would therefore be an odds of about 923 to 76, or nearly 12 
to 1 against his being right”
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Bayes Theorem

l The distribution of the data, n and m, for a given value of the 
unobserved variable, p, is the likelihood function: p(D|M)

l The initial assumption of the distribution of p is the prior, p(M)
l The denominator is the marginal likelihood or evidence, p(D)
l The final result is the posterior probability, p(M|D):

𝑃 𝑀 𝐷 =
𝑃 𝐷 𝑀 𝑃(𝑀)

𝑃(𝐷)
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The Monte Hall Problem

l You’re on a game show and are presented with three closed doors
l Behind one is a fabulous prize but behind the other two are goats
l The host asks you to pick one door and shows you that behind one 

of the others is a goat (it’s always a goat)
l Do you want to stick with your first choice?

𝑝 𝑝𝑟𝑖𝑧𝑒 𝑏𝑒ℎ𝑖𝑛𝑑 𝐴 𝑔𝑜𝑎𝑡 𝑏𝑒ℎ𝑖𝑛𝑑 𝐵 =

𝑝(𝑔𝑜𝑎𝑡 𝑏𝑒ℎ𝑖𝑛𝑑 𝐵|𝑝𝑟𝑖𝑧𝑒 𝑏𝑒ℎ𝑖𝑛𝑑 𝐴) M 𝑝(𝑝𝑟𝑖𝑧𝑒 𝑏𝑒ℎ𝑖𝑛𝑑 𝐴)
𝑝(𝑔𝑜𝑎𝑡 𝑏𝑒ℎ𝑖𝑛𝑑 𝐵)

=
1
2 𝑥

1
3

1
2

=
1
3
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Choice of prior

l In Bayes’ problem, we assumed a uniform distribution for p:

𝑝 𝜃 = 𝑐𝑜𝑛𝑠𝑡. , 𝑎 < 𝜃 < 𝑏

l This is called a flat prior or an uninformative prior
l Describes a state of knowledge in which we have observed at least 

one success and one failure, and have prior knowledge that both 
states are physically possible

l If parameter is limited to positive real values then the prior should 
be uniform in the logarithmic range:

𝑝 𝜃 ∝ 𝜃'& ⇒ 𝑝 ln𝜃 = 𝑐𝑜𝑛𝑠𝑡.
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Jeffrey’s rule

l The general recommendation for an uninformative prior is the 
square root of the determinant of the Fisher information for the 
model: 𝑝(𝜃) ∝ det ℐ(𝜃) where ℐ(𝜃) is the second moment of 
the partial derivative with respect to 𝝷 of the natural logarithm of 
the likelihood function:

ℐ 𝜃 = E
𝜕
𝜕𝜃
log 𝑓(𝜃)

(

= −E
𝜕(

𝜕𝜃(
log 𝑓(𝜃)

l For a Gaussian with an unknown mean:

𝑓 𝑥 𝜇 =
𝑒'(*'+)!/(.!

2𝜋𝜎(
and so the prior is:

𝑝 𝜇 ∝ E
𝑥 − 𝜇
𝜎(

(
= `

'/

/
𝑓 𝑥 𝜇

𝑥 − 𝜇
𝜎(

(
𝑑𝑥 =

1
𝜎
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Maximum entropy

l We want a measure that captures the information content of a 
distribution and then assign a prior that reflects our ignorance of 
the true parameter value by optimizing this quantity:

𝑆 𝑝&, 𝑝(, … , 𝑝" =c
01&

"

𝑝0 ln 𝑝0 (Shannon entropy)

l The maximum entropy prior maximizes:

𝑆 = −`𝑑𝑥 𝑝 𝑥 ln 𝑝(𝑥)

l So if we know the variance σ2 is finite for an arbitrary mean, μ, we 
can use Lagrange multipliers to show that:

𝑝 𝑥 =
1
2𝜋(

exp −
(𝑥 − 𝜇)(

2𝜎(

Amongst all real-valued distributions with a specified variance, the 
Gaussian has the maximum entropy
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Bayes factor

l The ratio of the relative likelihoods of the data under each model:

𝐾 =
𝑝(𝐷|𝑀&)
𝑝(𝐷|𝑀()

=
∫𝑝 𝐷 𝜃&, 𝑀& 𝑝 𝜃& 𝑀& 𝑑𝜃&
∫𝑝 𝐷 𝜃(, 𝑀( 𝑝 𝜃( 𝑀( 𝑑𝜃(

l Posterior odds = Bayes factor x prior odds

2 ln K K Strength of evidence
0 - 2 1 - 3 Not worth more than a bare mention
2 - 6 3 - 20 Positive
6 - 10 20 - 150 Strong
> 10 > 150 Very strong
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Evidence for ESP?

l A study of whether psychokinesis could influence an 
electronic random number generator reported 52263471 
successes out of 104490000 Bernoulli trials 
(ratio = 0.50017768)

l In the absence of any effect, ratio = 0.5 so p-value = 0.0003 (3.6𝜎)
l Assume 𝜃& = 0.5 for model 1 and an unknown 𝜃( for model 2 with 

Jeffreys’ prior for Bernoulli, 𝑓 𝜃 = 1/ (𝜃 1 − 𝜃 ):

𝐾 =
𝑝(𝐷|𝜃& = 0.5)

∫%
&𝑝(𝐷|𝜃()𝑓(𝜃()𝑑𝜃(

=
𝜋 0 0.52

𝐵(𝑆 + 0.5, 𝑁 − 𝑆 + 0.5)
= 𝑒(.45 = 18.7

So there is positive evidence against ESP. For a uniform prior, K ~ 15.4.
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Maximum likelihood estimation

l The likelihood of a data set given a particular model is the joint 
probability of each individual data point given the model:

𝐿 ≡ 𝑝 𝑥0 𝑀 𝜃 =o
01&

"

𝑝(𝑥0|𝑀 𝜃 )

l Although it is often useful to deal with the log-likelihood:

𝐿 =o
01&

"

ln(𝑝 𝑥0 𝑀 𝜃 )

l For the best-fit form of a model to a data set, the likelihood will be 
optimized in terms of the model parameters:

𝜕𝐿
𝜕𝜃0

𝑥0 , p𝜃0 = 0
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MLE example

l Consider a power law (Pareto) model of the form:

𝑓 =
𝑎𝑥!6

𝑥67&
for 𝑥 ≥ 𝑥!

l This gives a log-likelihood of:

ln 𝐿 = 𝑛 ln 𝛼 + 𝑛𝛼 ln 𝑥! − (𝛼 + 1)c
01&

"

ln 𝑥0

So

s𝛼 =
1

∑01&" ln 𝑥0𝑛 − ln 𝑥!
l As the sample size increases, the distribution of the MLE tends to 

a Gaussian distribution with mean 𝜃 and covariance matrix equal 
to the inverse of the Fisher information matrix, 𝓘(𝜃). 

l For the Pareto model:  ℐ 𝛼 = 𝑛/𝛼( so s𝛼~ 𝐺( s𝛼, 6
!

"
)
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Maximum a posteriori (MAP) estimation

l The MLE is the most probable Bayesian estimator assuming a flat 
prior.

l For other priors, the maximum a posteriori estimate is better:
p𝜃89: = argmax;𝐿 𝑥0 𝜃 𝑝(𝜃)

l Suppose we want to fit a Gaussian model to a data set and we 
believe the mean, 𝜇, is drawn from a different Gaussian 
𝐺 𝜎%, 𝜎!( :

l From this the MAP estimate for 𝜇 is:

which is a linear interpolation between the prior mean and the 
sample mean weighted by their respective covariances
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Random sampling

l In 1946, Stan Ulam was playing solitaire and decided to try to 
compute the chances that a particular solitaire laid out with 52 
cards would come out successfully. After attempting exhaustive 
combinatorial calculations, he decided to go for the more practical 
approach of laying out several solitaires at random and then 
observing and counting the number of successful plays.

l The idea of selecting a statistical sample to approximate a hard 
combinatorial problem is at the heart of Monte Carlo simulations

l We often want to generate a random sample from a particular 
distribution to approximate the distribution or compute an 
integral involving the distribution.
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Estimating multidimensional integrals

l The general multidimensional integration problem is of the form:

𝐼 𝜃 = `𝑔 𝜃 𝑝 𝜃 𝑑𝜃

l This can be computed numerically by generic Monte Carlo where 
a random set of M values uniformly sampled from within the 
integration value 𝑉; gives an estimate of the integral:

𝐼 ≃
𝑉;
𝑀
c
<1&

8

𝑔 𝜃< 𝑝(𝜃<)

l It would be much better if we could guarantee that the random 
set of values we use is (at least) asymptotically proportional to 
𝑝 𝜃 to give:

𝐼 𝜃 =
1
𝑀c

<'&

8

𝑔(𝜃<)
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Markov Chain Monte Carlo

l Consider a sequence of random variable where the probability of 
a given state at point t+1 only depends on the state at point t. Let 
T be a matrix of the transition probabilities between states. 

l Now we want the sequence to reach a stationary distribution 
proportional to some 𝑝 𝜃 and so the probability of arriving at 
point t+1 must be proportional to 𝑝 𝜃=7& :

𝑝 𝜃=7& =c
>

𝑇( 𝜃=7&, 𝑦)𝑝(𝑦)

𝑝 𝜃=7&|𝜃= = 𝑝 𝜃=|𝜃=7&
l The most popular MCMC algorithm is Metropolis-Hastings and 

this adopts:
𝑇 𝜃=7& 𝜃= = 𝑝#?? 𝜃=7&, 𝜃= 𝜃=7& 𝜃=

𝑝#?? 𝜃= , 𝜃@ =
𝑄 𝜃= , 𝜃@ 𝑝(𝜃@)
𝑄 𝜃@ 𝜃= 𝑝(𝜃=)


