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Outline

l Statistical Modelling
l Error and Loss Functions
l Evaluating Model Performance
l Linear Regression
l Multiple Linear Regression (with interaction terms)
l Polynomial Regression
l Robust Regression
l Model Selection
l Regularization
l Heteroscedastic Errors
l Logistic Regression
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Predicting a variable

Let’s imagine a scenario where we’d like to predict one variable 
using another (or a set of other) variables:
Examples:
Ø Predicting the amount of views a YouTube video will get next week 

based on video length, the date it was posted, previous number of 
views, etc.

Ø Predicting which movies a Netflix user will rate highly based on 
their previous movie ratings, demographic data, etc.

Ø Predicting the expected cab fare in New York City based on time of 
year, location of pickup, weather conditions, etc.

Ø Predicting the redshift of a galaxy based on its magnitudes and 
colors in different passband filters
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Outcome vs. predictor values

Definition
Suppose we are observing p+1 number variables and we are making 
n sets of observations. We define:
Ø the outcome or response variable is the variable we’d like to 

predict; typically, we denote this variable by Y and the individual 
measurements yi

Ø the features or predictor variables are the variables we use in 
making the predictions; typically, we denote these variables by X = 
(X1,…,Xp) and the individual measurements xi,j.

Note: i indexes the observation (i=1,2,…,n) and j indexes the value of 
the j-th predictor variable (j=1,2,…,p)
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True vs. statistical model

We will assume that the response variable, Y, relates to the 
predictors, X, through some unknown function expressed generally 
as:

𝑌 = 𝑓 𝑋 + 𝜖

Here, 
Ø f is the unknown function expressing an underlying rule for 

relating Y to X,
Ø ϵ is the random amount (unrelated to X) that Y differs from the 

rule f(X)

A statistical model is any algorithm that estimates f. We denote the 
estimated function  as '𝑓.
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Prediction vs. estimation

l Inference problems:
What’s important is obtaining '𝑓, our estimate of f. 

l Prediction problems
When we use a set of measurements of predictors, (xi,1,…,xi,p), in an 
observation to predict a value for a response variable, we denote 
the predicted value by (𝑦! ,

+𝑦! = '𝑓(𝑥!,#, … , 𝑥!,$)

We don’t care about the specific form of '𝑓, we just want to make 
our prediction +𝑦𝑖 as close to the observed value yi as possible. 
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Error and loss functions

A loss or error function quantifies how well a model performs.

The Mean Squared Error (MSE) is a common loss function for 
quantitative outcomes:

𝑀𝑆𝐸 =
1
𝑛
5
!%#

&

𝑦! − +𝑦! '

The quantity 𝑦! − +𝑦! is called a residual and measures the error at 
the ith prediction.
Assuming some mathematical form for f (and '𝑓), values are chosen 
for the unknown parameters of '𝑓 so that the loss function is 
minimized on the set of observations.
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Other loss functions

Ø Maximum absolute deviation

max
"

𝑦" − &𝑦"

Ø Sum of absolute deviations (L1-norm)

'
"

𝑦" − &𝑦"

Ø Sum of squared errors (L2-norm)

'
"

𝑦" − &𝑦" #

Others used in classification: hinge, logistic
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Linear regression

If each observation has only one predictor, we can build a model by 
first assuming a simple linear form for f (and '𝑓):

𝑌 = 𝑓 𝑋 + 𝜖 = 𝛽#()*+𝑋 + 𝛽,()*+ + 𝜖

Remember ϵ is the random quantity or noise by which observed 
values of Y differ from the rule 𝑓 𝑋 .
Our estimate is then:

9𝑌 = '𝑓 𝑋 = '𝛽# 𝑋 + '𝛽,

where :𝛽# and :𝛽, are estimates of 𝛽# and 𝛽, computed from our 
observations. 
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Which models are linear?

𝑌 = 𝛽,𝑒-. + 𝜖

𝑌 = 𝛽, + 𝛽# cos 𝑋 + 𝛽' sin 𝑋 + 𝜖

𝑌 =
𝑋
𝛽,

-/!
+ 𝜖

𝑌 = A𝛽, + 𝛽#𝑋 ∶ 𝑋 < 𝑥,
𝛽' + 𝛽0𝑋 ∶ 𝑋 ≥ 𝑥,
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Which models are linear?

𝑌 = 𝛽,𝑒-. + 𝜖

𝑌 = 𝛽, + 𝛽# cos 𝑋 + 𝛽' sin 𝑋 + 𝜖

𝑌 =
𝑋
𝛽,

-/!
+ 𝜖

𝑌 = A𝛽, + 𝛽#𝑋 ∶ 𝑋 < 𝑥,
𝛽' + 𝛽0𝑋 ∶ 𝑋 ≥ 𝑥,

𝒇 𝒙 𝜽) = 5
𝒑%𝟏

𝒌

𝜽𝒑𝒈𝒑 𝒙

NO

YES

YES

NO
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Inference for linear regression

Assume MSE for our loss function:

𝐿 𝛽,, 𝛽# =
1
𝑛
5
!%#

&

𝑦! − +𝑦! ' =
1
𝑛
5
!%#

&

𝑦! − 𝛽#𝑋 + 𝛽,
'

then the optimal values for :𝛽# and :𝛽, should be:

:𝛽,, :𝛽# = argmin
/",/!

𝐿 𝛽,, 𝛽#

Now taking partial derivatives of L and finding their global minima 
gives:

:𝛽# =
∑! 𝑥! − 𝑥̅ 𝑦! − P𝑦

∑! 𝑥! − 𝑥̅ '
:𝛽, = P𝑦 − :𝛽#𝑥̅
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Linear regression: a simple example

Let’s assume a simple data set, the average cab fare in NYC at 
different times of day:

By our formula, we compute the regression line to be:

9𝑌 = −1.2𝑋 + 8

and the predicted responses:

9𝑌 = (6.8, 5.6, 4.4, 3.2, 2.0)

Time (X) 1 2 3 4 5
Fare (Y) 6 7 4 3 2
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Training vs. Testing Sets

One way to evaluate our model is to use it to predict the responses 
for predictors that we did not use to build our model. This involves 
splitting data into a training set and a testing set after collecting a 
set of observations of predictor and response:
l Popular splits: (90, 10), (80, 20), (50, 50)

We use the training set to build a model and use the testing set to 
perform a final evaluation of the model, simulating model 
performance in real-time usage.

Note: To maintain the integrity of the final test:
l the test data should only be used once 
l the results should not be used to inform changes made to the 

model.
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Measurement vs. sampling error

𝑌 = 𝑓 𝑋 + 𝜖

The measurement error or irreducible error ϵ is noise introduced by 
random variations in natural systems or imprecisions of our scientific 
instruments. 

Variations in :𝛽, and :𝛽# are affected by:
Ø Var(ϵ) – the variance in the noise (measurement)
Ø n, the number of observations (sampling)

The variances of :𝛽,, :𝛽#are also called standard errors.
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Estimating sampling errors
Ø Analytically
If we know the variance 𝜎2 of the noise 𝜖, we can compute SE( :𝛽,), 
SE(:𝛽#) analytically: 

𝑆𝐸 :𝛽, = 𝜎 #
&
+ 5̅#

∑$ 5$-5̅ # 𝑆𝐸 :𝛽# = 7

∑$ 5$-5̅ #

Ø Bootstrapping
Estimate properties of an estimator by measuring those properties 
by randomly sampling from observed data

Ø Empirically
Assume residuals 𝜖! = 𝑦! − %𝑦! and 𝜖8 = 𝑦8 − %𝑦8 are uncorrelated for i≠j
and 𝜖~𝒩(0, 𝜎'):

𝜎 ≈
𝑛 $ 𝑀𝑆𝐸
𝑛 − 2

=
∑! 𝑦! − -𝑦! "

𝑛 − 2
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Confidence intervals

Definition
A n% confidence interval of an estimate 9𝑋 is the range of values 
such that the true value of X is contained in this interval with n
percent probability.

For linear regression, the 95% confidence interval for :𝛽,, :𝛽# can be 
approximated using their standard errors:

:𝛽9 = :𝛽9 ± 2𝑆𝐸 :𝛽9
for k = 0,1. 
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Residual analysis

In estimating the variance of 𝜖, we assumed that:

l the residuals 𝜖! = 𝑦! − %𝑦! were uncorrelated
l normally distributed with zero mean and fixed variance.

These assumptions need to be verified using the data. In residual 
analysis, we typically create two types of plots:

l a plot of 𝜖! vs. 𝑥! - this allows us to compare the distribution of 
noise at different values of 𝑥!

l a histogram of 𝜖! - this allows us to explore the distribution of the 
noise independent of 𝑥!
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Model fitness: 𝑅!

While loss functions measure the predictive errors made by a 
model, we are also interested in the ability of our models to capture 
interesting features or variations in the data.

The explained variance or 𝑅' is the ratio of the variation of the 
model and the variation in the data. The explained variance of a 
regression line is given by: 

𝑅' = 1 −
∑!%#& 𝑦! − ]𝑦! '

∑!%#& +𝑦! − ]𝑦! '

For a regression line, this gives:

0 ≤ 𝑅' ≤ 1
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Model fitness: information criteria

Information criteria are a set of metrics which measure the fit of a 
model to observations given the number of parameters used in the 
model.

Two such criteria are Aiken’s Information Criterion and Bayes 
Information Criterion:

𝐵𝐼𝐶 ≈ 𝑛 & ln
𝑅𝑆𝑆
𝑛

+ 𝐽 & ln 𝑛

The smaller the AIC or BIC value, the better the model.

𝑅𝑆𝑆 =.
!
𝑦! − 1𝑦!

𝐴𝐼𝐶 ≈ 𝑛 & ln
𝑅𝑆𝑆
𝑛

+ 2𝐽
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Cross validation: leave-one-out

Given a data set 𝑿$, … , 𝑿% , where each 𝑿" = 𝑥",$, … , 𝑥",' contains J
number of features.

To ensure that every observation in the data set is included in at least one 
training set and at least one validation set, we create training/validation 
splits using the leave one out method:

Ø Validation set: 𝑿"
Ø Training set: 𝑿(": = 𝑿$, … , 𝑿"($, 𝑿")$, … , 𝑿%

for 𝑖 = 1,… , 𝑛. We fit the model on each training set, denoted 2𝑓𝑿!" , and 
evaluate it on the corresponding validation set, 2𝑓𝑿!" 𝑿" . The cross 
validation score is the performance of the model averaged across all 
validation sets:

𝐶𝑉 𝑀𝑜𝑑𝑒𝑙 =
1
𝑛
𝐿 2𝑓𝑿!" 𝑿"
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Cross validation: K-fold

Rather than creating n number of training/validation splits, each 
time leaving one data point for the validation set, we can include 
more data in the validation set using K-fold validation:

Ø Split the data into K uniformly sized chunks, 𝐶#, … , 𝐶:
Ø We create K number of training/validation splits, using one of the 

K where chunks for validation and the rest for training

We fit the model for each training set, denoted :𝑓;%$, and evaluate it 
on the corresponding validation set, :𝑓;%$ 𝐶! . The cross validation 
score is the performance modelled :

𝐶𝑉 𝑀𝑜𝑑𝑒𝑙 =
1
𝑛 𝐿

:𝑓𝑪%$ 𝑪!
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Robust regression

Often a data set has a small fraction of points with very large 
residuals from the regression line. If scientific knowledge of the 
identity of discordant points is not available, robust techniques can 
be used to reduce the influence of such outliers.

The breakdown point of an estimator is the proportion of arbitrarily 
large data values that can be handled before giving an arbitrarily 
large estimator value (sample mean has a breakdown point of 1/n).

M estimators modify the underlying likelihood estimator to be less 
sensitive than the classic L2 norm: for any function 𝜓, any solution 
:𝛽= is an M-estimator:

5
!%#

&

𝜓 𝑦! − :𝛽=𝑥! 𝑥! = 0
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Robust regression: Huber loss

Ideally the M estimator increases less than the square of the 
residual and has a unique minimum at zero. One common example 
is the Huber estimator which minimizes:

𝐿>?@AB =

1
2 𝑦! − +𝑦! ' for 𝑦! − +𝑦! ≤ 𝑐

𝑐 𝑦! − +𝑦! −
1
2 𝑐

' for 𝑦! − +𝑦! ≥ 𝑐

Ivezic et al. 2014
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Multiple linear regression

It is unlikely that any response variable Y depends solely on 
one predictor x. Rather, we expect Y is a function of 
multiple predictors f(X1,…,XJ). We can still assume a linear 
form, though:

𝑦 = 𝑓 𝑋", … , 𝑋# + 𝜖 = 𝛽$ + 𝛽"𝑥" +⋯+ 𝛽#𝑥# + 𝜖

Hence, <𝑓 has the form:

=𝑦 = <𝑓 𝑋", … , 𝑋# = >𝛽$ +>𝛽"𝑥" +⋯+ ?𝛽#𝑥#
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Multiple linear regression in vectors

Given a set of observations

𝑥$,$, … , 𝑥$,', 𝑦$ , … , 𝑥%,$, … , 𝑥%,', 𝑦%

the data and the model can be expressed in vector notation,

𝒀 =
𝑦$
⋮
𝑦'

, 𝑿 =
1 ⋯ 𝑥$,'
⋮ ⋱ ⋮
1 ⋯ 𝑥%,'

, 𝜷 =
𝛽$
⋮
𝛽'

The MSE can then be expressed as:

𝑀𝑆𝐸 𝛽 =
1
𝑛
𝒀 − 𝑿𝛽 2

and minimizing it yields:

D𝛽 = 𝑿+𝑿 ($𝑿+𝒀 = argmin
𝜷

𝑀𝑆𝐸 𝜷
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Interaction terms

Now suppose that are interactions between predictors:

𝑦 = 𝛽, + 𝛽#𝑥# + 𝛽'𝑥' + 𝛽0𝑥#𝑥'

The term 𝛽0𝑥#𝑥' is called the interaction term. 

𝒀 =

𝑦#
𝑦'
⋮
𝑦&

, 𝑿 =

1 𝑥#,# 𝑥#,' 𝑥#,#𝑥#,'
1 𝑥',# 𝑥',' 𝑥',#𝑥','
⋮ ⋮ ⋮ ⋮
1 𝑥&,# 𝑥&,' 𝑥&,#𝑥&,'

, 𝜷 =

𝛽,
𝛽#
𝛽'
𝛽0

Minimizing the MSE again gives:

'𝛽 = 𝑿C𝑿 -#𝑿C𝒀 = argmin
𝜷

𝑀𝑆𝐸 𝜷
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Model selection

This is application of a principled method to determine the 
complexity of a model:
l Choosing a subset of predictors
l Choosing the degree of a polynomial model

It typically consists of the following steps:

l Split the training set into two subsets: training and validation
l Multiple models are fitted on the training set and each model is 

evaulated on the validation set
l The model with the best validation performance is selected
l The selected model is evaluated one last time on the testing set
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Overfitting

Overfitting is the phenomenon wherein the model is unnecessarily 
complex. Portions of the model are actually capturing the random 
noise in the observation rather than the relationship between 
predictor(s) and response. This causes the model to lose predictive 
power with new data.

Overfitting can happen when:
l There are too many predictors:
- The feature space has high dimensionality
- The polynomial degree is too high
- Too many cross terms are considered

l The coefficient values are too extreme

A sign of overfitting may be a high training R2 or low MSE and 
unexpectedly poor testing performance.
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Polynomial regression

The simplest non-linear model we can consider, for a response Y and a 
predictor X, is a polynomial model of degree M:

𝑦 = 𝛽! + 𝛽"𝑥 + 𝛽#𝑥# +⋯+ 𝛽$𝑥$ + 𝜖

However, we can treat as linear regression with each xmas a separate 
predictor. Thus:

𝒀 =

𝑦"
𝑦#
⋮
𝑦%

, 𝑿 =

1 𝑥"" … 𝑥"$

1 𝑥#" … 𝑥#$
⋮ ⋮ ⋱ ⋮
1 𝑥% … 𝑥%$

, 𝜷 =

𝛽!
𝛽"
⋮
𝛽$

Minimizing the MSE again gives:

0𝛽 = 𝑿&𝑿 '"𝑿&𝒀 = argmin
𝜷

𝑀𝑆𝐸 𝜷
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Regularization

The idea of regularization revolves around modifying the loss 
function, L; in particular, we add a regularization term that penalizes 
some specific properties of the model parameters:

𝐿BAE 𝛽 = 𝐿 𝛽 + 𝜆𝑅 𝛽

where 𝜆 is a scalar that gives the weight (or importance) of the 
regularization term.

Fitting the model using the modified loss function Lreg would result 
in model parameters with desirable properties (specified by R).
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LASSO Regression

Suppose we want to discourage extreme values in model parameters; 
we then need to choose a regularization term that penalizes parameter 
magnitudes. With MSE, a regularized loss function is:

𝐿FGHHI 𝛽 =
1
𝑛
5
!%#

&

𝑦! − 𝜷C𝒙! ' + 𝜆5
8%#

J

𝛽8

Note that ∑8%#
J 𝛽8 is the L1 norm of the vector 𝛽

5
8%#

J

𝛽8 = 𝜷 #

LLASSO is often called the loss function for L1 regularization and finding 
model parameters that minimize it is called LASSO regression.
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Ridge Regression

Alternatively, we can choose a regularization term that penalizes the 
squares of the parameter magnitudes:

𝐿K!LEA 𝛽 =
1
𝑛
5
!%#

&

𝑦! − 𝜷C𝒙! ' + 𝜆5
8%#

J

𝛽8'

Note that ∑8%#
J 𝛽8' is the L2 norm of the vector 𝛽

5
8%#

J

𝛽8' = 𝜷 '
'

LRidge is often called the loss function for L2 regularization and finding 
model parameters that minimize it is called ridge regression.
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Choosing 𝜆

We can see that in both ridge and LASSO regression, the larger our 
choice of the regularization parameter 𝜆, the more heavily we penalize 
large values in 𝛽:

Ø if 𝜆 is close to zero, we recover the MSE, i.e., ridge and LASSO 
regression is just ordinary regression

Ø If 𝜆 is sufficiently large, the MSE term in the regularized loss function 
will be insignificant and the regularization term will force 𝛽K!LEA and  
𝛽FGHHI to be close to zero

The recommendation is to select 𝜆 using cross validation.
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Theil-Sen estimator

“The most popular nonparametric technique for estimating a linear 
trend”

The slope of the regression line, 𝛽CH , is given by median of the 
& &-#

'
slopes defined by all pairs of data points:

𝛽!8 =
𝑌! − 𝑌8
𝑋! − 𝑋8

The intercept is given by the median of 𝑌! − 𝛽CH𝑋!.
Confidence intervals can be determined from the middle 95% of 
slopes from sampled pairs of points (n ~ 600).
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Heteroscedastic errors

So far we have been assuming that our errors are identically distributed or 
homoscedastic: 𝜖~𝒩 0, 𝜎# . In astronomy, it is common to have errors 
that are independent but not identically distributed (heteroscedastic): 
𝜖"~𝒩 0, 𝜎"# due to night-to-night variations, say. The effect of this is to 
introduce weighting of data points in estimators.

Recall that the matrix solution for linear regression is:

D𝛽 = 𝑿+𝑿 ($𝑿+𝒀
This becomes:

D𝛽 = 𝑿+𝑪($𝑿 ($(𝑿+𝑪($𝒀)
where

𝑪 =

𝜎$# 0 … 0
0 𝜎## … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎%#
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Logistic regression

What happens if our response variable is categorical?

𝑦 = A1, 𝛽, + 𝛽#𝑥 + 𝜖 > 0
0, otherwise

𝜖 is an error distributed by the logistic distribution

No closed form solution so requires an iterative solution.

𝑝 𝑥 =
1

1 + 𝑒%('-('.))


