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Exponential 
Growth of 
Data 
Volumes … and 

Complexity

From data poverty to data glut
From data sets to data streams
From static to dynamic, evolving data
From anytime to real-time analysis and discovery
From centralized to distributed resources
From ownership of data to ownership of expertise

Understanding of
complex phenomena 

requires complex data!

on Moore’s law time scales
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What is Fundamentally New Here?
• The information volumes and 

rates grow exponentially
Most data will never be seen by 

humans
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There are patterns in the data that 
cannot be comprehended by 

humans directly

• A great increase in the 
information complexity

• A great increase in the data information content
Data driven vs. hypothesis driven science



The Evolving Paths to Knowledge
• The First Paradigm:

Experiment/Measurement

• The Second Paradigm:
Analytical Theory

• The Third Paradigm:
Numerical Simulations

• The Fourth Paradigm:
Data-Driven Science
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Hypothesis-driven science Data-driven science

Hypothesis/theory

Experiment

Understanding

Data sets and streams

Data exploration,
Pattern discovery

Hypothesis/theory

Understanding
The two approaches are 

complementary
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Data analysis

Data analysis





How Much Data* is There in Astronomy?
* Archived, curated, accessible

• My best guesstimate (early/mid 2019):  ~ 200 PB × 2±1

– Estimated data rate > 100 TB/day
• Most data come from sky surveys
• Both data volumes and data rates grow 

exponentially, with a doubling time ~ 1.5 years
• Even more important is the growth of data 

complexity and data quality (information content)
• For comparison:

Human Genome < 1 GB
Human Memory < 1 GB (?)
1 TB ~ 2 million books
Human Bandwidth ~ 1 TB / year (±)
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There Are Lots Of Stars In The Sky…
Modern sky surveys obtain ~ 1015 – 1016 bytes of images,

catalog ~ 109 objects (stars, galaxies, etc.),
and measure ~ 102 – 103 numbers for each

Gaia DR2 Catalog Image
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… and then do it again, and again, …





Sky Surveys: Data Volumes

170 TB (DR15)

1990s

2000s

2010s

2020s

(from Zhang 2015)

ZTF: ~ 1 PB/yr



Some “Local” Producers:
• CRTS (all surveys, per A. Drake):  

o ~ 100 TB total to date
o Current data rate ~ 25 TB/yr

• ZTF (3 year survey, per F. Masci): 
o ~ 3.2 PB total archived
o Current data rate ~ 1 TB/night (images), real-time data products    

~ 4 TB/night
• OVRO (per G. Hallinan):

o LWA: Raw data rate ~ 12 PB/day, archived ~ 50 TB/day ~ 18 PB/yr
o MWA: ~ Raw data rate ~ 0.65 PB/day, archived ~ 27 PB/yr

o DSA: Raw data rate ~ 7 PB/day, much less archived

Some space missions:
² Kepler ~ 20 TB
² GALEX ~ 30 TB
² Gaia, 5-yr mission: ~ 200 TB
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Zwicky Transient Facility (2017-)

• New camera on Palomar Oschin 48” 
with 47 deg2 field of view

• 3750 deg2 / hr to 20.5-21 mag (1.2 TB 
/ night)

• Full northern sky (~12,000 deg2) 
every three nights

• Galactic Plane every night
• Over 3 years: 3 PB, 750 billion 

detections, ~1000 detections / src
• First megaevent survey: 106 alerts 

per night (Apr 2018)
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ZTF = 0.1 LSST



The Virtual Observatory Concept
• Envisioned as a complete, dynamical, distributed, open 

research environment for the new astronomy with massive 
and complex data sets

– Provide and federate 
content (data, metadata) 
services, standards, and 
analysis/compute services
– Develop and provide data 
exploration and discovery 
tools (…)
– Today it is the global data 
grid of astronomy
– A successful example of a 
science Cyber-Infrastructure 
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IVOA: The Virtual Observatory Reified
• Formed in 2002 to facilitate the international collaborative effort 

needed to enable integrated access to astronomical archives
• 21 international members
• Working Groups and Interest Groups overseen by Technical 

Coordination Group reporting to Executive Committee:

• Committee for Science Priorities
• Engage with big projects

Ø Applications
Ø Data Access Layer
Ø Data Models
Ø Grid and Web Services
Ø Registry
Ø Semantics

Ø Data Curation and Preservation
Ø Knowledge Discovery in Databases
Ø Education
Ø Operations
Ø Solar System
Ø Theory
Ø Time Domain

IVOA.net



Resources at http://ivoa.net

. . . . . . . . .

A compilation of tools 
and services

IVOA is now mainly 
a standards 
coordination body
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AstroInformatics
is essentially astronomical applications of Data Science

Data Science AstronomyAstroInformatics

• While VO became a global data grid of astronomy, 
astroinformatics focuses of the knowledge discovery tools

• It includes a growing community of scientists, both as 
contributors and as users

• Like other X-Informatics (X = bio, geo, …) it is a bridge 
between astronomy and data science, and for the 
methodology sharing with other fields.



AstroInformatics
It contains all of the components of Data Science, in their 

astronomical applications, and their interconnections

Astroinformatics

Pipelines Archives

VOData 
systems

Data 
Analytics

… etc.
HPC

Data Analytics

Machine Learning

Visualization

(Astro)Statistics

Numerical Methods

… etc.

The 10th international conference, 
astroinformatics2019.org, at Caltech, June 24-27, 2019



Survey-Based Astronomy
Survey Telescopes Data Reduction Pipeline

Image calibration, source finding 
and parametrization

Archive Database

Source catalogs define 
feature spaces

Data Analysis, Target Selection

Modeling, Machine Learning...

Follow-up Telescopes



Exploration of Parameter Spaces is a Central 
Problem of Data Science

Clustering, classification, correlation and outlier searches, …

Machine Learning Is the Key Methodology
Challenges:
• Algorithm and data model 

choices
• Data incompleteness
• Feature selection and 

dimensionality reduction
• Uncertainty estimation
• Scalability
• Visualization
... etc.

Especially       
with the data 

dimensionality

}
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Pattern or structure (Correlations, Clustering, Outliers, 
etc.) Discovery in High-Dimensional Parameter Spaces

D >> 3 parameter/feature 
space hypercube

Data heterogeneity

But in some corner of some 
subset of dimensions of this data 
space, there is something ≠ noise, 

i.e., a statistically significant 
structure with an unknown form
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High-D data cloud: mostly 
noise, with an arbitrary 
PDF distribution

Missing data

Mapping the Entropy 
of Large Data Spaces?



From “Morphological Box” to the 
Observable Parameter Spaces 

Fritz Zwicky

Zwicky’s concept: explore all possible combinations 
of the relevant parameters in a given problem; these 
correspond to the individual cells .
in a “Morphological Box”

Example: Zwicky’s discovery of the 
compact star-forming dwarfs



Systematic Exploration of the Observable 
Parameter Spaces (OPS)

Its axes are defined by the 
observable  quantities

Every observation, surveys 
included, carves out a 

hypervolume in the OPS

Technology opens new domains of the OPS           New discoveries



Measurements
Parameter Space

Colors of stars and quasars

SDSS

Dimensionality ≤  the number of 
observed quantities

Physical
Parameter Space

Both are populated by 
objects or events

Fundamental Plane of hot 
stellar systems

E
dSph

GC



A Familiar Example: HR Diagram
Observable

Color-magnitude diagram
Theoretical

Temperature-Luminosity Space

Theory
+

Other data

• Not filled uniformly: clustering indicates different families
• Empty regions may be due to selection effects or physics
• Clustering + dimensionality reduction = correlations



Mapping the Data Parameter Spaces

• If enough known, training  
examples are known, this can 
be used for an automated, 
supervised classification, or the 
searches for the rare, but 
known objects (e.g., quasars)

• Objects of a particular type (e.g., stars, galaxies, SNe, 
Quasars, …) may occupy only specific regions of a 
parameter space, and form clusters

• Unsupervised clustering (let the data tell you what 
clusters are present) may reveal previously unknown 
types of objects, as outliers from the known clusters 



Model-Based Outlier Search and Surprises
Sometimes we know where to look for outliers on the basis of a 
prior knowledge, e.g., quasars or brown dwarfs in a color space

Typical z > 4 QuasarPeculiar Lo-BAL QSO

… but sometimes 
you find 

something 
unexpected:

Expected high-z 
quasar region



Classification, Clustering, and Outliers
• Supervised learning (classification): use a known 

set of objects to train a classifier
– Hard to find previously unknown things

• Unsupervised learning (clustering): let the data tell 
you how many different kinds of things are there
– Could find previously unknown types as outliers

There is no “one 
size fits all”: 

different choices 
for different 

problems



What is an Outlier?

? ?

? ?

An outlier or a fat tail?

It depends on the underlying 
probability distribution, and 
they are seldom Gaussian



Clustering and Searches for Outliers
Sometimes this is easy, not 
critically dependent on the 
assumed probability density 
distributions of the clusters

But sometimes it isn’t

Having the right cluster 
descriptors, number of 
clusters, and metric of this 
feature space is crucial 



Parameter Spaces for the Time Domain

• For surveys:
o Total exposure per pointing 
o Number of exposures per pointing
o How to characterize the cadence?

ÊWindow function(s)

Ê Inevitable biases 

(in addition to everything else: flux, wavelength, etc.)

• For objects/events ~ light curves:
o Significance of periodicity, periods
o Descriptors of the power spectrum (e.g., power law)
o Amplitudes and their statistical descriptors
… etc. − over 70 parameters defined so far, but which ones 

are the minimum / optimal set?



From Light Curves to Feature Vectors
• We compute ~ 70 parameters and statistical measures for 

each light curve: amplitudes, moments, periodicity, etc.
• This turns heterogeneous light curves into homogeneous 

feature vectors in the parameter space
• Apply a variety of automated classification methods
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Variability Feature Space
• Generate homogeneous representation of time series 

by defining a number of descriptive parameters:
−Morphology (shape): skew, kurtosis
−Scale: Median absolute deviation, biweight midvar.
−Variability: Stetson, Abbe, von Neumann
−Timescale: periodicity, coherence, characteristic
−Trends: Thiel-Sen
−Autocorrelation: Durbin-Watson
−Long-term memory: Hurst exponent
−Nonlinearity: Teraesvirta
−Chaos: Lyapunov exponent
−Models: HMM, CAR, Fourier decomposition, wavelets

• Defines a high-dimensional feature space to 
characterize the temporal behavior



Feature Selection Algorithms
Most clustering and classification algorithms scale poorly with 
the dimensionality of the feature spaces. Feature selection is 

one set of dimensionality reduction techniques.  
• Filter methods apply a statistical measure to assign a scoring 

to each feature, usually independently (univariate).  The 
features are ranked by the score.

• Wrapper methods look for a set of features where different 
feature combinations are evaluated and compared to other 
combinations.

• Embedded methods learn which features best contribute to 
the accuracy of the model while the model is being created.

• The scoring criterion depends on the goal, e.g.:
– Accurate predictions for the regression searches
– Classification discrimination power for clustering
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Feature Selection Algorithms
Optimal sets of features may be different for
• Different regression target variables:

e.g., y1 = f1(xi , xj , xk , …), y2 = f2(xp , xq , xr , …), etc. 

• Different classification tasks:
e.g., Class (A ,B) = f(xa , xb , xc , …), Class (A ,B,C) = f(xd , xe , xf , …) 

• Different regression or classification algorithms:
e.g., ANN, DT, RF, SVM, …
. . . so they have to be optimized in each individual case
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See:
Donalek et al., IEEE BigData 2013, p. 35 = arxiv/1310.1976
D'Isanto et al. 2016, MNRAS, 457, 3119



Feature Selection Algorithms: Examples
• Fast Relief Algorithm (aka ReliefF) ranks features according to 

how well their values distinguish between instances.

• Fisher Discriminant Ratio (FDR) ranks features according to 
their classification discriminatory power.  It can be applied only to 
binary classification problems.

• Correlation-based Feature Selection (CFS) is a wrapper method 
which selects features that have low redundancy (i.e., not 
correlated with each other) and is strongly predictive of a class.

• Fast Correlation Based Filter (FCBF) is a supervised filter 
algorithm, similar to the CFS.  Searches for features that have 
predominant correlation with the class . Can  be computationally 
efficient with very high dimensional data.

• Multi Class Feature Selection (MCFS) is an unsupervised method 
based on the spectral analysis of the data. 

Djorgovski
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Optimizing Feature Selection

Eclipsing binary (W U Ma)RR Lyrae

Rank features in the 
order of classification 
quality for a given 
classification problem, 
e.g., RR Lyrae vs. WUMa



Examples from Astronomy:
"The weirdest SDSS galaxies: results from an outlier detection 
algorithm”, D. Baron & D. Poznanski 2017, MNRAS 465, 4530

Used Random Forests algorithm to classify 
SDSS galaxies using spectroscopic properties.  
Defined a “Weirdness” parameter to quantify 
the outliers.

All outliers 
found are 
members of the 
known classes 
of objects.



Examples from Astronomy:
"Unsupervised Clustering of Type II Supernova Light Curves",

A. Rubin & A. Gal-Yam 2016, ApJ, 828, 111
Used the K-Means algorithm to identify 3 
principal clusters: slow rise, fast rise – fast 
decay, and fast rise – slow decay



To Recap:
• Astronomy is now well into the Petascale data regime, 

and data volumes and rates grow exponentially 
according to Moore’s Law
– Most data come from the large surveys
– The biggest growth now is in the time domain
– This is true across all wavelengths
– Growth of data complexity and information content

• Derived source catalogs typically contain ~ 109 objects, 
with ~ 102 - 103 parameters (features) each
– Data fusion of different surveys increases the data 

complexity and discovery potential
– We use Machine Learning to process and analyze the 

data, including source classification and selection of 
interesting targets for the follow-up studies


