
Class #4: Elements of Stellar Dynamics

Structure and Dynamics of Galaxies, Ay 124, Winter 2009

January 20, 2009

Material in this class is taken mostly from Binney & Tremaine §4.1–4.3.

Most of Ay 124 is focussed on observational properties of galaxies (which is why Binney & Merrifield
is the main text). The underlying theory of stellar/galactic dynamics requires an entire class (or
more. . . ) itself, so we can only explore a few aspects of it here. You’re encouraged to read more of
Binney & Tremaine (and try the problems in that book) to get a more extensive understanding of
galactic dynamics.

The basic idea of stellar dynamics is to determine how systems of stars (a.k.a. galaxies) evolve under
the effects of their own self-gravity (and, perhaps, some other source of gravitational potential, such
as dark matter). We’ll make two approximations1: 1) we’ll assume that stars are collisionless (more
of this in a minute) and 2) we’ll assume that diffuse (i.e. not in stars) gas is negligible, so we can
ignore hydrodynamics.

In many cases, we’ll apply stellar dynamics to systems which are a) in equilbrium and b) are at
least partially self-gravitating. Since any such equilibrium must be a dynamic equilbrium (i.e.
the individual stars are always moving along their orbits even though the overall structure of the
stellar system is unchanging) the main goal of stellar dynamics in such cases is to determine a
self-consistent distribution of stars in phase space which maintains the equilibrium when evolved
gravitationally.

1 Collisionless Boltzmann Equation [CBE]

Our first goal is to find an equation which describes the evolution of a stellar system as described
above. This equation is known as the “Collisionless Boltzmann Equation”. To see why it’s “colli-
sionless” we need to consider relaxation times in stellar systems.

1Actually more than two, but these are the two important ones.

1



Figure 1: Geometry of a gravitational collision between two stars.

1.1 Relaxation Time

We want an order-of-magnitude estimate how long it takes for encounters with other stars to
significantly change the energy of a star. Consider an encounter between two stars. Assuming the
collision is a small perturbation to the motion of the star we can approximate the force experienced
by the star as:

v̇⊥ =
Gm

b2 + x2
cos θ =

Gmb
(b2 + x2)3/2

≈ Gm
b2

[
1 +

(
vt

b

)2
]−3/2

. (1)

Integrating over the entire collision gives us the change in velocity of the star:

v⊥ ≈
Gm
bv

∫ ∞
−∞

(1 + s2)−3/2ds =
2Gm
bv

, (2)

whcih is approximately the force at closest approach times the duration of the encounter, b/v. The
surface density of stars in a galaxy is of order N/πR2, so in crossing the galaxy once, the star
experiences

δn =
N

πR2
2πbdb =

2N
R2

bdb, (3)

encounters with impact parameter between b and b+ db. The encounters cause randomly oriented
changes in velocity, so δv⊥ = 0, but there can be a net change in v2

⊥:

δv2
⊥ ≈

(
2Gm
bv

)2 2N
R2

ddb. (4)
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Our perturbation approach breaks down if δv⊥ ∼ v⊥ which occurs is b <∼bmin = Gm/v22, so
integrating over all impact parameters from bmin to R (the largest possible impact parameter):

∆v2
⊥ =

∫ R

bmin

δv2
⊥ ≈ 8N

(
Gm
Rv

)2

ln Λ, (5)

where Λ = R/bmin (“Coulomb logarithm”). The typical speed of a star in a self-gravitating galaxy
is

v2 ≈ GNm
R

. (6)

Therefore, we find
∆v2
⊥

v2
=

8 ln Λ
N

, (7)

and the number of crossings required for order unity change in velocity is:

nrelax =
N

8 ln Λ
. (8)

Since Λ = R/bmin ≈ Rv2/Gm ≈ N we find trelax ≈ [0.1N/ lnN ]tcross.

Relaxation is important for systems up to globular cluster scales, but is entirely negligible for
galaxies.

System N trelax/tcross trelax

Small stellar group 50 1.3
Globular cluster 105 870 108yr
Galaxy 1011 4× 108 4× 107Gyr

1.2 Deriving the CBE

We consider a large collection of stars moving under the influence of a smooth potential Φ(x, t) (we
can assume it to be smooth because of the collisionless approximation). The state of the system
is fully specified by the distribution function f(x,v, t) (a.k.a phase space density) which is defined
such that f(x,v, t)d3xd3v gives the number of stars in a small volume. Given f(x,v, t0) we can
compute the distribution at any later time from Newton’s laws. It’s convenient to write

(x,v) ≡ w ≡ (w1, . . . , w6), (9)

which implies a 6-d flow velocity

ẇ = (ẋ, v̇) = (v̇,−∇Φ). (10)

Since stars don’t appear or vanish (at least, not on the timescales we care about) this flow must
conserve stars. This allows us to write a continuity equation for f(w, t):

∂f

∂t
+

6∑
α=1

∂(fẇα
∂α

= 0. (11)

2For a more careful treatment of small b encounters, take a look at the treatment of dynamical friction, §7.1 of
Binney & Tremaine.
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This is just like the usual mass continuity equation, but in six dimensions—it simply says that the
change in phase space density in any volume is equal to the sum of net fluxes of density over the
boundaries of that volume.

We can write
6∑

α=1

∂ẇα
∂wα

=
3∑
i=1

(
∂vi
∂xi

+
∂v̇i
∂vi

)
=

3∑
i=1

− ∂

∂vi

(
∂Φ
∂xi

)
= 0, (12)

where we’ve used the fact that (∂vi/∂xi) = 0 because vi and xi are independent coordinates and
∇Φ does not depend on velocities. Using eqn. (12) to simplify eqn. (11) we get the collisionless
Boltzmann equation:

∂f

∂t
+

6∑
α=1

ẇα
∂f

∂wα
= 0, (13)

i.e.
∂f

∂t
+

3∑
i=1

(
v̇i
∂f

∂xi
+ ∂Φ∂xi

∂f

∂vi

)
= 0. (14)

or
∂f

∂t
+ v ·∇f −∇Φ · ∂f

∂v
= 0 (15)

This importance of this is clear if we look at the Langrangian derivative which we define to be:

df
dt
≡ ∂f

∂t
+

6∑
α=1

ẇα
∂f

∂wα
. (16)

The collisionless Boltzmann equation then implies:

df
dt

= 0, (17)

i.e. the flow of stars through phase space is incompressible—the phase space density around a given
star always remains the same.

Collisions would invalidate this equation and lead to an additional term appearing on the right
side of these equations. We’ll come back to this issue when we study the Fokker-Planck equation.
It’s worth knowing that the phase space density and the coordinate density are the same in any
canonical coordinate system (not just the Cartesian coordinates we’ve considered here—see p. 193
of Binney & Tremaine for more discussion of this point).

1.2.1 CBE in Arbitrary Coordinates

We can use the fact that f is constant along the trajectories of stellar phase points to derive the
collisionless Boltzmann equation in other coordinates. For example, in cylindrical coordinates:

df
dt

=
∂f

∂t
+ Ṙ

∂f

∂R
+ φ̇

∂f

∂φ
+ ż

∂f

∂z
+ ˙vR

∂f

∂vR
+ v̇φ

∂f

∂vφ
+ v̇z

∂f

∂vz
= 0 (18)

which, using,

v̇R = −∂Φ
∂R

+
v2
φ

R
; v̇φ = − 1

R

∂Φ
∂φ

; v̇z = −∂Φ
∂z

, (19)
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simplifies to

∂f

∂t
+ vR

∂f

∂R
+
vφ
R

∂f

∂φ
+ vz

∂f

∂z
+

(
v2
φ

R
− ∂Φ
∂R

)
∂f

∂vR
− 1
R

(
vRvφ +

∂Φ
∂φ

)
∂f

∂vφ
− ∂Φ
∂z

∂f

∂vz
= 0. (20)

A similar procedure works in any coordinate system

1.3 Coarse-grained Distribution Function

Obviously to define a density of discrete objects such as stars we have to average over sufficiently
large volumes that contain many stars. It’s therefore useful to interpret f as a probability density:
i.e. if there is some probability that a region of phase space D0 contains a star at time t = 0 then
at a later time t the probability is the same for the region of phase space Dt to which D0 has been
propagated by Newton’s laws. The phase space density therefore plays a similar role as the wave
function in quantum mechanics.

As an example, suppose that fM is the distribution function of M-dwarf stars. We can calculate
the probability that an M-dwarf lies within 1pc of the Sun using:

P =
∫

d3v
∫
|x−x�|<1pc

fM (x,v)d3x

=
∫

d3v
∫
Q1(x,v)fM (x,v)d3x = 〈Q1〉. (21)

We sometimes define a coarse-grained distribution function f̄ by averging f over some small volume
of phase space. It’s important to note that f̄ does not satisfy the collisionless Boltzmann equation.

2 The Jeans Equation

Since the Boltzmann equation is a function of seven variables its difficult to work with. We can
simplify it by taking moments of this equation. For example, integrating over all velocities gives
(using summation convention):∫

∂f

∂t
d3v +

∫
vi
∂f

∂xi
d3v − ∂Φ

∂xi

∫
∂f

∂vi
d3v = 0 (22)

The range of velocities over which we integrate is independent of time so we can move the ∂/∂f
outside of the integral. Similarly, since vi does not depend on xi we can take ∂/∂xi outside of the
integral. Also, the final term vanishes if we apply the divergence theorem and use the fact that
f(x,v, t) = 0 for sufficiently large v. So, if we define

ν ≡
∫
fd3v; v̄i ≡

1
ν

∫
fvid3v (23)

then we find:
∂ν

∂t
+
∂(νv̄i)
∂xi

= 0, (24)
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which has the form of a continuity equation. Multiplying the collisionless Boltzmann equation
instead by vj and integrating over all velocities gives

∂

∂t

∫
fvjd3v +

∫
vivj

∂f

∂xi
d3v − ∂Φ

∂xi

∫
vj
∂f

∂vi
d3v = 0. (25)

The last term can be transformed by applying the divergence theorem and using the fact that f
vanishes for large v:∫

vj
∂f

∂vi
d3v =

∫
∂(vjf)
∂vi

d3v −
∫
∂vj
∂vi

d3v = −
∫
∂vj
∂vi

d3v = −
∫
δijfd3v = −δijν. (26)

Equation (25) can then be rewritten as

∂(νv̄j
∂t

+
∂(νvivj)
∂xi

+ ν
∂Φ
∂xj

= 0, (27)

where
vivj =

1
ν

∫
vivjfd3v. (28)

Subtracting v̄j times the continuity equation leaves

ν
∂v̄j
∂t
− v̄j

∂(νv̄i)
∂xi

+
∂(ν ¯vivj)
∂xi

= −ν ∂Φ
∂xj

. (29)

The, breaking vivj into the streaming motion part, v̄iv̄j , and the random motion part

σ2
ij = (vi − v̄i)(vj − v̄j) = vivj − v̄iv̄j . (30)

Using this in eqn. (29) gives the analogue of Euler’s equation:

ν
∂v̄j
∂t

+ νv̄i
∂v̄j
∂xi

= −ν ∂Φ
∂xj
−
∂(νσ2

ij)
∂xi

. (31)

The left side and first term on the right are analagous to the normal Euler equation of fluid flow.
The final term on the right is similar to the pressure term −∇p—more precisely, −νσ2

ij is a stress
tensor which describes an anisotropic pressure. These equations are collectively known as Jeans
equations. The stress tensor is symmetric so we can, at any point, transform to a coordinate system
where the tensor is diagonal. The ellipsoid with axes aligned with this coordinate system and with
principle axes σ11, σ22 and σ33 is called the velocity ellipsoid.

While this equation is useful for connecting to observable properties (e.g. streaming velocities) it
has a severe problem: we have no analogue to the equation of state in a fluid system to relate the
six components of the stress tensor, σ2, to the density ν. While we could use higher moments of
the Boltzmann equation to find expressions for the components of this tensor, they would depend
on even higher moments. This process would continue ad infinitum. Therefore, we have to make
some physical assumption about the form of σ2.

The Jeans equations in other coordinate systems can be obtained by taking moments of the Boltz-
mann equation in those coordinate systems. For example, in cylindrical coordinates:

∂ν

∂t
+

1
R

∂(Rνv̄R)
∂R

+
∂(νv̄z)
∂z

= 0, (32)
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∂(νv̄R)
∂t

+
∂(νv2

R)
∂R

+
∂(νvRvz)

∂z
+ ν

v2
R − v2

φ

R
+
∂Φ
∂R

 = 0, (33)

∂(νv̄φ)
∂t

+
∂(νvRvφ)

∂R
+
∂(νvφvz)

∂z
+

2ν
R
vφvR = 0. (34)

and
∂(νv̄z)
∂t

+
∂(νvRvz)

∂R
+
∂(νv2

z)
∂z

+
νvφvR
R

+ ν
∂Φ
∂z

= 0. (35)

In spherical coordinates we similarly have:

d(νv2
r )

dr
+
ν

r

[
2v2
r −

(
v2
θ + v2

φ

)]
= −ν dΦ

dr
. (36)

2.1 Application: Asymmetric Drift

It is observed that stellar populations in our Galaxy which have a large mean square radial velocity
rotate around Galactic Center more slowly than the local standard of rest (LSR). We can explain
this phenomenon.

Define the asymmetric drift, va, as the difference between the LSR and the mean rotational velocity
of the population. Taking the Jeans equations in cylindrical coordinates, and evaluating them at
z = 0 (since the Sun is close to the midplane) and assume that ∂ν/∂z (i.e. ignore the vertical
gradient in the disk) then:

R

ν

∂(νv2
R

∂R
+R

∂(vRvz)
∂z

+ v2
R − v2

φ +R
∂Φ
∂R

= 0; (z = 0) (37)

Defining an azimuthal velocity dispersion:

σ2
φ = (vφ − v̄φ)2 = v2

φ − v̄
2
φ (38)

and using R(∂Φ/∂R) = v2
c , where vc is the circular velocity, leaves us with

σ2
φ − v2

R −
R

ν

∂(νv2
R)

∂R
−R∂(vrvz)

∂z
= v2

c − v̄2
φ

= (vc − v̄φ)(vc + v̄φ) = va(2vc − va). (39)

Assuming va � 2vc then

2vcva ≈ v2
R

[
σ2
φ

v2
R

− 1− ∂ ln(νv2
R)

∂ lnR
− R

v2
R

∂(vRvz)
∂z

]
. (40)

Observations of galaxies suggest that v2
z ∝ ν so, assuming the shape of the velocity ellipsoid is

constant, [∂ ln(νv2
R)/∂ lnR] ≈ 2(∂ ln ν/∂ lnR). The second derivative is more difficult and depends

on the alignment of the velocity ellipsoid at points just away from the midplane. Numerical studies
show that the ellipsoid behavior is somewhere between remaining aligned with the cylindrical
coordinate system and aligning with a spherical coordinate system. In the first case the derivative
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is zero, in the second we have vRvz ≈ (v2
R − v2

z )(z/R). Taking a case midway between these two
gives:

2vcva
v2
R

≈
[
σ2
φ

v2
R

− 3
2
− 2

∂ ln ν
∂ lnR

+
1
2
v2
z

v2
R

± 1
2

(
v2
z

v2
R

− 1

)]
, (41)

where the sign ambiguity covers the range of possible behavior for the velocity ellipsoid. Assuming
ν = ν0 exp(−R/Rd), σ2

φ ≈ v2
z ≈ 0.45v2

R, R0/Rd = 2.4 and vc = 220km/s, then we find va ≈
v2
R/110km/s which agrees quite well with observations.

Also read: “Mass Density in the Solar Neighborhood”, “Schwarzchild’s Velocity Ellipsoid”,
“Velocity Dispersions in Spherical Systems” and “Spheroidal Components with Isotropic Velocity

Dispersion” (B&T, p. 202–211)

3 Virial Equations

We can also take spatial moments of the Boltzmann equation to find equations governing the
global properties of the system. Identifying ν with the mass density ρ, multiplying the Boltzmann
equation by xk and integrating over all spatial variables gives:∫

xk
∂(ρvj)
∂t

d3x = −
∫
xk
∂(ρvivj)
∂xi

d3x−
∫
ρxk

∂Φ
∂xk

d3x. (42)

The second term on the right is the potential energy tensor, W and the first term on the right can
be rewritten as (using the divergence theorem and assuming that the density vanishes at infinity):∫

xk
∂(ρvivj)
∂xi

d3x = −
∫
δkiρvivjd3x = −2Kkj , (43)

where we’ve defined the kinetic energy tensor K as

Kjk ≡
1
2

∫
ρvjvkd3x. (44)

We can split this into ordered and random contributions:

Kjk = Tjk +
1
2

Πjk, (45)

where
Tjk ≡

1
2

∫
ρv̄j v̄kd3x; Πjk ≡

∫
ρσ2

jkd
3x. (46)

We can take the time derivative in eqn. (43) outside of the integral (since xk does not depend on
time) and then average over (k, j) and (j, k) components leaving

1
2

d
dt

∫
ρ(xkv̄j + xj v̄k)d3x = 2Tjk + Πjk +Wjk. (47)

(We’ve made use of the symmetry of these tensors under exchange of indices.) Defining a moment
of interia tensor I:

Ijk ≡ ρxjxkd3x, (48)
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we find
1
2

dIjk
dt

=
1
2

∫
∂ρ

∂t
xjxkd3x. (49)

Using the continuity equation (and divergence theorem) this becomes

−1
2

∫
∂(ρv̄i)
∂t

xjxkd3x =
1
2

∫
ρv̄i(xkδji + xjδki)d3x, (50)

which implies
1
2

dIjk
dt

=
1
2

∫
ρ(v̄jxk + v̄kxj)d3x. (51)

Combining these results gives us the tensor virial theorem:

1
2

d2Ijk
dt2

= 2Tjk + Πjk +Wjk. (52)

Taking the trace of this equation and assuming a steady state (Ï = 0) we find the scalar virial
theorem:

2K +W = 0. (53)

Expressed in terms of the system’s mass, M , and rms velocity 〈v2〉:

〈v2〉 =
|W |
M

=
GM
rg

. (54)

We can also find:
E = K +W = −K =

1
2
W. (55)

3.1 Application: Rotation of Elliptical Galaxies

Using the tensor virial theorem we can infer information about the internal motions of elliptical
galaxies from their shapes and rotation speeds. We consider an axisymmetric system which rotates
about its symmetry axis and is seen edge on. We can define the x-axis to lie along the line of sight.
From the symmetry of this system we have:

Wxx = Wyy;Wij = 0(i 6= j), (56)

and similar relations for Π and T. The only nontrivial, independent virial equations are then:

2Txx + Πxx +Wxx = 0; 2Tzz + Πzz +Wzz = 0. (57)

Taking the ratio of these gives:
2Txx + Πxx

2Tzz + Πzz
=
Wxx

Wzz
. (58)

If the only streaming motion is rotation about the z-axis, Tzz =, and

2Txx =
1
2

∫
ρv̄2
φd3

x =
1
2
Mv2

0, (59)
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Figure 2: Rotation parameter, v/σ, as a function of ellipticity, ε. The second parameter, δ, is
constant along each line. Dahsed lines show how points move in this plane as the galaxy is inclined
to the line of sight.
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where M is the mass of the system and v2
0 is the mass-weighted mean-square rotation speed. We

also have
Πxx = Mσ2

0 (60)

where σ2
0 is the mass-weighted mean-square random velocity along the line of sight to the galaxy,

and
Πzz = (1− δ)Πxx = (1− δ)Mσ2

0, (61)

where δ < 1 is a parameter that measures the degree of anisotropy in the galaxy’s velocity dispersion
tensor. With these definitions we find:

v2
0

σ2
0

= 2(1− δ)Wxx/Wzz − 2 (62)

It can be shown (Binney & Tremaine, §2.5) that for a system whose isodensity surfaces are con-
centric ellipsoids the ratio Wxx/Wzz depends only on the ellipticity, ε, of those ellipsoids and not
on the density profile. The above equation therefore states that the ratio v0/σ0 depends only on ε
and δ.

In practice, we don’t see galaxies edge on. At some inclination i we expect the observed rotation
speed to be

∼
v (i) = v0 sin i, (63)

while the observed line-of-sight velocity dispersion varies as:

∼
σ

2
(i) = σ2

0 sin2 i+ (1− δ)σ2
0 cos2 i = σ2

0(1− δ cos2 i). (64)

The apparent axial ratio will also vary as the galaxy is inclined:

(1− εa)2 = (1− ε2t ) sin2 i+ cos2 i, (65)

and so
εa(2− εa) = εt(2− εt) sin2 i. (66)

Observationally, dwarf elliptical galaxies are found to follow the prediction for the δ = 0 line quite
well—this suggests that they are oblate spheroidal bodies supported by rotation. Giant elliptical
galaxies however do not follow the δ = 0 line, suggesting that they are not rotationally flattened—
instead they must have anisotropic velocity dispersion tensors.

Also read: “Mass-to-light” ratios of spherical systems (B&T, p. 214)
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