Ay 124 - Lecture 4 - Supplementary Slides

 Stellar Dynamics
Dynamical Modeling of Stellar Systems

- A stellar system is fully described by an evolving phase-space density distribution function, $f(\boldsymbol{r}, \boldsymbol{v}, t)$
- Unfortunately, in most cases we observe only 3 out of 6 variables: 2 positional + radial velocity; sometimes the other 2 velocity comp's (from proper motions); rarely the 3rd spatial dimension
- ... And always at a given moment of t. Thus we seek families of stellar systems seen at different evolutionary states
- Not all of the phase space is allowed; must conserve integrals of motion, energy and angular momentum:

$$
\frac{E}{m}=\frac{1}{2} v^{2}+\Phi(r) \quad \text { and } \quad \frac{\vec{J}}{m}=\vec{r} \times \vec{v}
$$

- The system is finite and $f(r, v, t) \geq 0$. The boundary conditions:

$$
f \rightarrow 0 \quad \text { as either } \quad r \text { or } v \rightarrow \pm \infty
$$

Stellar Dynamics

- Gravity is generally the only important force in astrophysical systems (and almost always a Newtonian approx. is OK)
- Consider astrophysical systems which can be approximated as a self-gravitating "gas" of stars (\sim point masses, since in most cases $\mathrm{R}_{\star} \ll$ r.m.s.): open and globular star clusters, galaxies, clusters of galaxies
- If 2-body interactions of stars are important in driving the dynamical evolution, the system is called collisional (star clusters); if stars are mainly moving in the collective gravitational field, it is called collisionless (galaxies)
- Sometimes stars actually collide, but that happens only in the densest stellar systems, and rarely at that

Dynamical Modeling of Stellar Systems

- The evolution of $f(\boldsymbol{r}, \boldsymbol{v}, t)$ is described by the Bolzmann eqn., but usually some approximation is used, e.g., Vlasov (= collisionless Boltzmann) or Fokker-Planck eqn.
- Their derivation is beyond the scope of this class ...
- Typically start by assuming $f(v, t)$, e.g., a Maxwellian
- Density distribution is obtained by integrating $\rho(\boldsymbol{r})=\int f(\boldsymbol{r}, \boldsymbol{v}) d \boldsymbol{v}$
- From density distribution, use Poisson's eqn. to derive the gravitational potential, and thus the forces acting on the stars:

$$
\nabla^{2} \Phi(r)=4 \pi G \rho \quad \text { and } \quad F=-\nabla \Phi(r)
$$

- The resulting velocities must be consistent with the assumed distribution $f(\boldsymbol{r}, \boldsymbol{v})$
- The system can evolve, i.e., $f(\boldsymbol{r}, \boldsymbol{v}, t)$, but it can be usually described as a sequence of quasi-stationary states

Dynamics of Stellar Systems

- The basic processes are acceleration (deflection) of stars due to encounters with other stars, or due to the collective gravitational field of the system at large
- Stellar encounters lead to dynamical relaxation, wheby the system is in a thermal equilibrium. The time to reach this can be estimated as the typical star to change its energy by an amount equal to the mean energy; or the time to change its velocity vector by ~ 90 deg.
- There will be a few strong encounters, and lots of weak ones. Their effects can be estimated through Coulom-like scattering

By conservation of energy, we expect a large change in the (direction of) the final velocity if the change in potential energy at closest approach is as large as the initial kinetic energy:

Strong encounter

$$
\frac{G m^{2}}{r} \approx \frac{1}{2} m V^{2} \Rightarrow r_{s} \equiv \frac{2 G m}{V^{2}}
$$

Near the Sun, stars have random velocities $V \sim 30 \mathrm{~km} \mathrm{~s}^{-1}$,
which for a typical star of mass $0.5 \mathrm{M}_{\text {sun }}$ yields $\mathrm{r}_{\mathrm{s}} \sim 1 \mathrm{au}$.

Good thing for the Solar System that strong encounters are very rare...

Strong encounters

In a large stellar system, gravitational force at any point due to all the other stars is almost constant. Star traces out an orbit in the smooth potential of the whole cluster.

Orbit will be changed if the star passes very close to another star - define a strong encounter as one that leads to $\Delta \mathbf{v} \sim \mathbf{v}$.

Consider two stars, of mass m. Suppose that typically they have average speed V .

Kinetic energy: $\quad \frac{1}{2} m V^{2}$
When separated by distance r, gravitational potential energy:

$$
\frac{G m^{2}}{r}
$$

Time scale for strong encounters:
In time t, a strong encounter will occur if any other star intrudes on a cylinder of radius r_{s} being swept out along the orbit.

Volume of cylinder: $\quad \pi r_{s}^{2} V t$
For a stellar density n, mean number of encounters:

$$
\pi r_{s}^{2} V t n
$$

Typical time scale between encounters:

$$
t_{s}=\frac{1}{\pi r_{s}^{2} V n}=\frac{V^{3}}{4 \pi G^{2} m^{2} n} \quad \begin{aligned}
& \text { (substituting for the strong encounter } \\
& \text { radius } r_{s} \text {) }
\end{aligned}
$$

Note: more important for small velocities.

Plug in numbers (being careful to note that n in the previous expression is stars per cubic cm, not cubic parsec!)

$$
t_{s} \approx 4 \times 10^{12}\left(\frac{V}{10 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{3}\left(\frac{m}{M_{\text {sun }}}\right)^{-2}\left(\frac{n}{1 \mathrm{pc}^{-3}}\right)^{-1} \mathrm{yr}
$$

Conclude:

- stars in the disks of galaxies $\left(\mathrm{V} \sim 30 \mathrm{~km} \mathrm{~s}^{-1}, \mathrm{n} \sim 0.1 \mathrm{pc}^{-3}\right.$ near the Sun), never physically collide, and are extremely unlikely to pass close enough to deflect their orbits substantially.
- in a globular cluster (V $\sim 10 \mathrm{~km} \mathrm{~s}^{-1}, \mathrm{n} \sim 1000 \mathrm{pc}^{-3}$ or more), strong encounters will be common (i.e. one or more per star in the lifetime of the cluster).

Weak encounters

Stars with impact parameter $b \gg r_{s}$ will also perturb the orbit. Path of the star will be deflected by a very small angle by any one encounter, but cumulative effect can be large.

Because the angle of deflection is small, can approximate situation by assuming that the star follows unperturbed trajectory:

Define distance of closest approach to be b; define this moment to be $t=0$.

Final perpendicular velocity is:

$$
\begin{aligned}
\Delta V_{\perp} & =\int_{-\infty}^{\infty} \frac{d V_{\perp}}{d t} d t \\
& =\frac{1}{M} \int_{-\infty}^{\infty} F_{\perp}(t) d t \\
& =\frac{1}{M} \int_{-\infty}^{\infty} \frac{G M m b}{\left(b^{2}+V^{2} t^{2}\right)^{3 / 2}} d t=\frac{2 G m}{b V} \quad \begin{array}{l}
\text { As before, small V leads } \\
\text { to larger deflection } \\
\text { during the flyby }
\end{array}
\end{aligned}
$$

Deflection angle is:

Setting $V=c$, see that this is exactly half the correct relativistic value for massless particles (e.g. photons).

If the star receives many independent deflections, each with a random direction, expected value of the perpendicular velocity after time t is obtained by summing the squares of the individual velocity kicks:

$$
\left\langle\Delta V_{\perp}^{2}\right\rangle=\Delta V_{1}^{2}+\Delta V_{2}^{2}+\Delta V_{3}^{2}+\ldots
$$

Writing this as an integral (i.e. assuming that there are very many kicks):

$$
\left\langle\Delta V_{\perp}^{2}\right\rangle=\int_{b_{\min }}^{b_{\max }}\left(\frac{2 G m}{b V}\right)^{2} d N \quad \begin{aligned}
& \text { Where } \mathrm{dN} \text { is the expected number } \\
& \text { of encounters that occur in time } \mathrm{t} \\
& \text { between impact parameter } \mathrm{b} \text { and } \\
& \mathrm{b}+\mathrm{db} .
\end{aligned}
$$

(From P. Armitage)

Relaxation time

After a long enough time, the star's perpendicular speed will (on average) grow to equal its original speed. Define this as the relaxation time - time required for the star to lose all memory of its initial orbit.

Set: $\quad V^{2}=\left\langle\Delta V_{\perp}^{2}\right\rangle=\frac{8 \pi G^{2} m^{2} n t_{\text {relax }}}{V} \ln \left[\frac{b_{\text {max }}}{b_{\text {min }}}\right]$
\ldots and solve for $\mathrm{t}_{\text {relax }}: \quad t_{\text {relax }}=\frac{V^{3}}{8 \pi G^{2} m^{2} n \ln \left[b_{\max } / b_{\text {min }}\right]}$
Recall that the strong encounter time scale was:

$$
\square t_{\text {relax }}=\frac{t_{s}}{2 \ln \left[b_{\max } / b_{\min }\right]}
$$

Frequent distant interactions are more effective at changing the orbit than rare close encounters...

$$
t_{s}=\frac{V^{3}}{4 \pi G^{2} m^{2} n}
$$

Using identical reasoning as for the strong encounter case:

This gives for the expected velocity:

$$
\begin{aligned}
\left\langle\Delta V_{\perp}^{2}\right\rangle & =\int_{b_{\min }}^{b_{\max }} n V t\left(\frac{2 G m}{b V}\right)^{2} 2 \pi b d b \\
& =\frac{8 \pi G^{2} m^{2} n t}{V} \int_{b_{\min }}^{b_{\max }} \frac{d b}{b} \\
& =\frac{8 \pi G^{2} m^{2} n t}{V} \ln \left[\frac{b_{\max }}{b_{\min }}\right]
\end{aligned} \begin{aligned}
& \text { Logarithm means in a uniform } \\
& \text { density stellar system, `encounters' } \\
& \text { with stars at distances (b -> 10b) } \\
& \text { and (10b -> 100b) etc contribute } \\
& \text { equally to the deflection. }
\end{aligned}
$$

Relaxation time for a stellar cluster

The factor $\ln \left[b_{\max } / b_{\text {min }}\right]$ depends upon the limits of integration. Usually take:

- $b_{\text {min }}$ to be the strong encounter radius r_{s} (~ 1 au for the Sun). Approximations made in deriving the relaxation time are definitely invalid for $r<r_{s}$.
- $\mathbf{b}_{\text {max }}$ to be the characteristic size of the whole stellar system - for the Sun would be reasonable to adopt either the thickness of the disk (300 pc) or the size of the galaxy $(30 \mathrm{kpc})$.

$$
\Rightarrow \ln \left[b_{\text {max }} / b_{\text {min }}\right]=18-23
$$

Because the dependence is only logarithmic, getting the limits exactly right isn't critical.

$$
t_{\text {relax }} \approx \frac{2 \times 10^{12}}{\ln \left[b_{\max } / b_{\min }\right]}\left(\frac{V}{10 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{3}\left(\frac{m}{M_{\text {sun }}}\right)^{-2}\left(\frac{n}{1 \mathrm{pc}^{-3}}\right)^{-1} \mathrm{yr}
$$

Evaluate the relaxation time for different conditions:

Sun Globular cluster
Open cluster
$\mathrm{V} / \mathrm{km} \mathrm{s}^{-1}$
30
$\mathrm{n} / \mathrm{pc}^{-3}$
0.1
size / pc

Predict that clusters ought to evolve due to star-star interactions during the lifetime of the Galaxy.

Number density of stars = number of stars / volume:

$$
n=\frac{N}{\frac{4}{3} \pi R^{3}}
$$

Range of radii over which weak interactions can occur is:

$$
\frac{b_{\max }}{b_{\min }}=\frac{R}{r_{s}}=\frac{R V^{2}}{2 G m}=\frac{R}{2 G m} \times \frac{G N m}{R}=\frac{N}{2}
$$

Finally define the crossing time for a star in the cluster:

$$
t_{\mathrm{cross}}=\frac{R}{V}
$$

Can use the virial theorem to write this result in an alternate form:

Average value of the kinetic energy

Average value of gravitational potential energy

For a cluster of N stars, each of mass m , moving at average velocity V in a system of size R :

- total mass $\mathrm{M}=\mathrm{Nm}$
- total kinetic energy: $\quad \frac{1}{2} \mathrm{NmV}^{2}$
- gravitational potential energy: $\quad \sim \frac{G M^{2}}{R}=\frac{G(N m)^{2}}{R}$

Applying the virial theorem:

$$
V=\sqrt{\frac{G N m}{R}}
$$

Ratio of the relaxation time to the crossing time is:

$$
\frac{t_{\text {relax }}}{t_{\text {cross }}}=\frac{\frac{V^{3}}{8 \pi G^{2} m^{2} n \ln \left[b_{\max } / b_{\min }\right]}}{\frac{R}{V}}=\frac{V^{4}}{8 \pi G^{2} m^{2} n R \ln \left[b_{\max } / b_{\min }\right]}
$$

Substitute for V, n and $\left[\mathrm{b}_{\text {max }} / \mathrm{b}_{\text {min }}\right]$ and this simplifies to:

$$
\frac{t_{\text {relax }}}{t_{\text {cross }}}=\frac{N}{6 \ln [N / 2]}
$$

In a cluster, number of orbits a star makes before it is significantly perturbed by other stars depends only on the number of stars in the system.

Interactions are negligible for galaxy size systems, but very important for small clusters.

Consequences of relaxation

Evaporation: two-body relaxation allows stars to exchange energy amongst themselves. If at some moment a star becomes unbound (kinetic + potential energy >0) then it will escape the cluster entirely.

Evaporation time $t_{\text {evap }} \sim 100 t_{\text {relax }}$, and although long, it limits the cluster lifetime.

Evaporation is accelerated by tidal shocks, which implant additional kinetic energy to the stars:

For globular clusters, passages through the Galactic disk or bulge
For open clusters, passages of nearby giant molecular clouds (GMCs) or spiral density waves

Mass segregation: two-body relaxation tries to equalize the kinetic energy of different mass stars, rather than their velocity. Since:

$$
\mathrm{KE}=\frac{1}{2} m V^{2}
$$

...more massive stars tend to have smaller velocities and sink to the center of the cluster

Core collapse: stars in the cluster core tend to have higher velocities. If they attempt to equalize kinetic energy with stars outside the core, they lose energy, and sink even urther toward the center.

Limit of this process is called core collapse - eventually contraction is probably halted by injection of energy from binary stars.

Dynamical Friction

Why does the orbit of a satellite galaxy moving within the halo of another galaxy decay?

Stars in one galaxy are scattered by gravitational perturbation of passing galaxy.

Stellar distribution around the intruder galaxy becomes
asymmetric - higher stellar density downstream than upstream.
Gravitational force from stars produces a ‘frictional’ force which slows the orbital motion

Dynamical Friction

Figure 14.14. Dynamical friction arises when a mass m moves at velocity \mathbf{v} relative to a distribution of stars which statistically have no mean motion. For simplicity, we have depicted the stars to be at rest (relative to the center of their galaxy), and we have drawn the situation as it appears to an observer at rest relative to m. Thus, mass m sees stars approach at velocity $-\mathbf{v}$, and be deflected by the gravity of m. This deflection produces a slight excess of mass behind M, since the stars will on the average be closer together after deflection than before. This mass excess pulls m in the direction of $-\mathbf{v}$, producing a net drag which tends to decrease v

Major Galaxy Mergers

- Direct consequence of dynamical friction
- Formation of tidal tails, bridges, etc.
- Stars, gas, and dark matter behave differently
- Generally lead to onset of starburst and nuclear activity

Numerical
 Simulation of Merging
 Disk
 Galaxies

Major mergers between typical large galaxies are relatively rare, but Minor mergers between galaxies of very different masses are much more common.

Example: the Magellanic clouds,
bound satellites orbiting within the extended halo of the Milky Way, $\sim 50 \mathrm{kpc}$ distance.
Eventually will spiral in and merge into the Milky Way.

Sagittarius dwarf galaxy is another satellite which is now in process of merging...

This was much more common at high redshifts \rightarrow galaxy evolution

(From P. Armitage)

How quickly will the LMC merge with the Milky Way?

Simple estimate - dynamical friction time:

With these numbers, estimate orbit will decay in ~ 3 Gyr Close satellite galaxies will merge!

