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Stellar Dynamics 

Stellar Dynamics 

•! Gravity is generally the only important force in 
astrophysical systems (and almost always a Newtonian approx. 
is OK) 

•! Consider astrophysical systems which can be approximated 
as a self-gravitating “gas” of stars (~ point masses, since in 
most cases R

!
 << r.m.s.): open and globular star clusters, 

galaxies, clusters of galaxies 

•! If 2-body interactions of stars are important in driving the 
dynamical evolution, the system is called collisional (star 
clusters); if stars are mainly moving in the collective 
gravitational field, it is called collisionless (galaxies) 

–! Sometimes stars actually collide, but that happens only in the 
densest stellar systems, and rarely at that 

Dynamical Modeling of Stellar Systems 

•! A stellar system is fully described by an evolving phase-space 

density distribution function, f(r,v,t) 

–! Unfortunately, in most cases we observe only 3 out of 6 variables:      

2 positional + radial velocity; sometimes the other 2 velocity comp’s 

(from proper motions); rarely the 3rd spatial dimension 

–! … And always at a given moment of t.  Thus we seek families of 

stellar systems seen at different evolutionary states 

•! Not all of the phase space is allowed; must conserve integrals of 

motion, energy and angular momentum: 

•! The system is finite and  f(r,v,t) ! 0.  The boundary conditions: 

Dynamical Modeling of Stellar Systems 

•! The evolution of f(r,v,t) is described by the Bolzmann eqn., but 

usually some approximation is used, e.g., Vlasov (= collisionless 

Boltzmann) or Fokker-Planck eqn. 

–! Their derivation is beyond the scope of this class … 

•! Typically start by assuming  f(v,t), e.g., a Maxwellian 

•! Density distribution is obtained by integrating !(r)  = ! f(r,v) dv 

•! From density distribution, use Poisson’s eqn. to derive the 

gravitational potential, and thus the forces acting on the stars: 

•! The resulting velocities must be consistent with the assumed 

distribution f(r,v) 

•! The system can evolve, i.e., f(r,v,t), but it can be usually 

described as a sequence of quasi-stationary states 



Dynamics of Stellar Systems 

•! The basic processes are acceleration (deflection) of stars due 

to encounters with other stars, or due to the collective 

gravitational field of the system at large 

•! Stellar encounters lead to dynamical relaxation, wheby the 

system is in a thermal equilibrium.  The time to reach this can 

be estimated as the typical star to change its energy by an 

amount equal to the mean energy; or the time to change its 

velocity vector by ~ 90 deg. 

•! There will be a few strong encounters, and lots of weak ones.  

Their effects can be estimated through Coulom-like scattering 

(From P. Armitage)!

Strong encounters!

In a large stellar system, gravitational force at any point due"

to all the other stars is almost constant. Star traces out an orbit"
in the smooth potential of the whole cluster."

Orbit will be changed if the star passes very close to another"

star - define a strong encounter as one that leads to "v ~ v."

Consider two stars, of mass m. Suppose that"

typically they have average speed V."

Kinetic energy:"
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potential energy:"
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By conservation of energy, we expect a large change in the"

(direction of) the final velocity if the change in potential energy"
at closest approach is as large as the initial kinetic energy:"
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Strong encounter radius"

Near the Sun, stars have random velocities V ~ 30 km s-1, "

which for a typical star of mass 0.5 Msun yields rs ~ 1 au."

Good thing for the Solar System that strong encounters are"

very rare…"

(From P. Armitage)!

Time scale for strong encounters:"

In time t, a strong encounter will occur if any other star intrudes"

on a cylinder of radius rs being swept out along the orbit."
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For a stellar density n, mean number of encounters:"
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(substituting for the strong encounter"

radius rs)"

Note: more important for small velocities."
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Plug in numbers (being careful to note that n in the previous"

expression is stars per cubic cm, not cubic parsec!)"
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Conclude:"

•! stars in the disks of galaxies (V ~ 30 km s-1, n ~ 0.1 pc-3"

"near the Sun), never physically collide, and are "
"extremely unlikely to pass close enough to deflect"

"their orbits substantially."

•! in a globular cluster (V ~ 10 km s-1, n ~ 1000 pc-3 or more),"

"strong encounters will be common (i.e. one or more ""

"per star in the lifetime of the cluster)."

(From P. Armitage)!

Weak encounters!

Stars with impact parameter b >> rs will also perturb the "

orbit. Path of the star will be deflected by a very small angle"
by any one encounter, but cumulative effect can be large."

Because the angle of deflection is small, can approximate"

situation by assuming that the star follows unperturbed"
trajectory:"

Velocity V!

Star mass M!

Star mass m!

Impact!

parameter b!

Distance Vt!

Define distance of closest approach to be b; define this "

moment to be t = 0."
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(From P. Armitage)!

Force on star M due to gravitational attraction of star m is:"
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(along line joining two stars)"

Component of the force perpendicular to the direction of "

motion of star M is:"
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Using F = mass x acceleration:"

! 

F" = M
dV"

dt

Velocity component"

perpendicular to"
the original direction"

of motion"

Integrate this equation with respect to time to get final velocity"

in the perpendicular direction."

Note: in this approximation, consistent to assume that "

! 

V
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remains unchanged. Whole calculation is OK provided that"

the perpendicular velocity gain is small."
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Final perpendicular velocity is:"
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As before, small V leads"

to larger deflection"
during the flyby"

Deflection angle is:"
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Setting V = c, see that this is exactly half the correct "

relativistic value for massless particles (e.g. photons)."
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If the star receives many independent deflections, each with "

a random direction, expected value of the perpendicular "
velocity after time t is obtained by summing the squares of the"

individual velocity kicks:"
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Writing this as an integral (i.e. assuming that there are very"

many kicks):"
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Where dN is the expected number"

of encounters that occur in time t"
between impact parameter b and"

b + db."
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Using identical reasoning as for the strong encounter case:"
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Number density "

of perturbing stars"

Distance star travels"

in time t"

Area of the annulus"

between impact"
parameter b and"

b + db"

This gives for the expected velocity:"
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Logarithm means in a uniform "

density stellar system, `encounters#"
with stars at distances (b -> 10b)"

and (10b -> 100b) etc contribute"
equally to the deflection."

(From P. Armitage)!

Relaxation time!

After a long enough time, the star#s perpendicular speed will"

(on average) grow to equal its original speed. Define this as"
the relaxation time - time required for the star to lose all memory"

of its initial orbit."

Set:"
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…and solve for trelax:"

! 

t
relax

=
V
3

8"G2
m
2
n ln b

max
b
min[ ]

! 

t
s

=
V
3

4"G2
m
2
n

Recall that the strong encounter time scale was:"
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Frequent distant interactions are more effective at changing!

the orbit than rare close encounters…!

(From P. Armitage)!

Relaxation time for a stellar cluster!

The factor ln[bmax / bmin] depends upon the limits of integration."

Usually take:"

•! bmin to be the strong encounter radius rs (~1 au for "

"the Sun). Approximations made in deriving the"
"relaxation time are definitely invalid for r < rs."

•! bmax to be the characteristic size of the whole stellar"

"system - for the Sun would be reasonable to "
"adopt either the thickness of the disk (300 pc)"

"or the size of the galaxy (30 kpc)."
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Because the dependence is only logarithmic, getting the limits"

exactly right isn#t critical."

(From P. Armitage)!
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Evaluate the relaxation time for different conditions:"

Sun! Globular cluster! Open cluster!

V / km s-1!

n / pc-3!

size / pc!

30" 10" 1"

0.1" 104" 10"

1000" 5" 5"

3 x 1013 yr" ~100 Myr" ~100 Myr"

Predict that clusters ought to evolve due to star-star"

interactions during the lifetime of the Galaxy."

(From P. Armitage)!

Can use the virial theorem to write this result in an alternate"

form:"

! 

2 KE + PE = 0

Average value of"

the kinetic energy"

Average value of gravitational"

potential energy"

For a cluster of N stars, each of mass m, moving at average"

velocity V in a system of size R:"

•! total mass M = Nm"

•! total kinetic energy:"
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Applying the virial theorem:"
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Number density of stars = number of stars / volume:"

! 

n =
N

4

3
"R3

Finally define the crossing time for a star in the cluster:"
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Range of radii over which weak interactions can occur is:"

(From P. Armitage)!

Ratio of the relaxation time to the crossing time is:"
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Substitute for V, n and [bmax / bmin] and this simplifies to:"
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In a cluster, number of orbits a star makes before it is!

significantly perturbed by other stars depends only on !
the number of stars in the system.!

Interactions are negligible for galaxy size systems, but very"

important for small clusters."

(From P. Armitage)!



Consequences of relaxation!

Evaporation: two-body relaxation allows stars to exchange "

"energy amongst themselves. If at some moment a star"
"becomes unbound (kinetic + potential energy > 0) then"

"it will escape the cluster entirely."

Evaporation time tevap ~ 100 trelax , and although long, it limits"

the cluster  lifetime."

Evaporation is accelerated by tidal shocks, which implant additional kinetic energy 
to the stars:"

For globular clusters, passages through the Galactic disk or bulge"

For open clusters, passages of nearby giant molecular clouds (GMCs) or spiral 
density waves"

(From P. Armitage)!

Mass segregation: two-body relaxation tries to equalize the"

"kinetic energy of different mass stars, rather than their"
"velocity. Since:"
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…more massive stars tend to have smaller velocities"

and sink to the center of the cluster."

Core collapse: stars in the cluster core tend to have higher "

"velocities. If they attempt to equalize kinetic energy with "
"stars outside the core, they lose energy, and sink even"

"further toward the center. "

Limit of this process is called core collapse - eventually"

contraction is probably halted by injection of energy from"
binary stars."

(From P. Armitage)!

Analysis suggests that large-N, roughly spherical systems"

are stable, long lived structures (elliptical galaxies, the bulges"
of spiral galaxies)."

Does not mean that anything goes as far as galaxy shapes:"

•! most obviously, need to have consistency between the"

"mean stellar density and the gravitational force:"

Gravitational"

potential"

Allowed orbits "

of stars in the"
galaxy"

Average stellar"

density at any "
point in the galaxy"

•! also more subtle issues - e.g. if the potential of the galaxy "

"admits chaotic orbits, then even small perturbations"
"can shift stars into qualitatively different orbits."

(From P. Armitage)!

Dynamical Friction!

Why does the orbit of a satellite galaxy moving within the "

halo of another galaxy decay?"

Stars in one galaxy are scattered by gravitational perturbation"
of passing galaxy."

Stellar distribution around the intruder galaxy becomes"
asymmetric - higher stellar density downstream than upstream."

Gravitational force from stars produces a `frictional# force"

which slows the orbital motion."

(From P. Armitage)!



Dynamical Friction 

!"#$%&"'&()*+&

Numerical 

Simulation  

of Merging 

Disk 

Galaxies 
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Major Galaxy Mergers 

•! Direct consequence of dynamical friction 

•! Formation of tidal tails, bridges, etc. 

•! Stars, gas, and dark matter behave differently 

•! Generally lead to onset of starburst and nuclear activity 

Major mergers between typical large galaxies are relatively rare, but Minor 

mergers between galaxies of very different masses are much more common."

Example: the Magellanic clouds,"

bound satellites orbiting within the extended 
halo of the Milky Way, ~50 kpc distance."

Eventually will spiral in and merge into the 
Milky Way."

Sagittarius dwarf galaxy is another satellite 
which is now in process of merging…"

This was much more common at high 

redshifts " galaxy evolution"

(From P. Armitage)!



How quickly will the LMC merge with the Milky Way?"

Simple estimate - dynamical friction time:"
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Galactic density at LMC - "

for flat rotation curve estimate"
3 x 10-4 Solar masses / pc3"

~3"

With these numbers, estimate orbit will decay in ~3 Gyr"

Close satellite galaxies will merge!"

(From P. Armitage)!


