

# **Star Clusters (Mostly Globular)**

- Definition and basic properties
- Correlations and non-correlations of cluster parameters

   Hints about their formation
  - Their steller resulting and short
- Their stellar populations and cluster ages
- Dynamical evolution of star clusters
  - King models
  - Core collapse and the role of binaries
  - Gravothermal oscillations
  - Tidal evaporation
  - Stellar collisions and modification of stellar populations
- Formation mechanisms of globular clusters
  - Multiple stellar populations in globulars
- Open clusters
  - Their origins and demise

# **Star Clusters**

Open (or Disk):  $N_{\star} \sim 10^2 - 10^3$ Ages  $\sim 10^7 - 10^9$  yr

# **Globular:** N<sub>\*</sub> ~ $10^4 - 10^7$

Ages ~ 10 - 13 Gyr





- Great "laboratories" for stellar dynamics
- Dynamical and evolutionary time scales < or << Galaxy's age, and a broad range of evolutionary states is present

#### Basic Properties of Typical, Pressure-Supported Stellar Systems

|                     | N                | <i>R</i><br>(pc) | V <sub>total</sub><br>(km/s) | t <sub>cross</sub> =R∕v<br>(x10 <sup>6</sup> yr) | t <sub>relax</sub><br>(yr) |  |
|---------------------|------------------|------------------|------------------------------|--------------------------------------------------|----------------------------|--|
| Open<br>cluster     | 100              | 2                | 0.5                          | 4                                                | 8x10 <sup>6</sup>          |  |
| Globular<br>cluster | 10 <sup>5</sup>  | 4                | 10                           | 0.4                                              | 4x10 <sup>8</sup>          |  |
| E Galaxy<br>core    | 10 <sup>10</sup> | 400              | 250                          | 2                                                | 10 <sup>14</sup>           |  |
| E galaxy            | 10 <sup>12</sup> | 10               | 600                          | 20                                               | 1x10 <sup>17</sup>         |  |





# The Range of GC Luminosities



DSS Blue, FOV = 36 arcmin

# **Globular Cluster Properties**

Table 1. Basic Facts about the Globular Clusters of the Galaxy

| Number known                                   | 147                        |
|------------------------------------------------|----------------------------|
| Median distance from Galactic Centre           | $9.3 { m kpc}$             |
| Median absolute V magnitude                    | -7.27                      |
| Median concentration                           | 1.50                       |
| Median core relaxation time                    | $3.39 \times 10^8 { m yr}$ |
| Median relaxation time at the half-mass radius | $1.17\times 10^9 {\rm yr}$ |
| Median core radius                             | $1.32 \mathrm{pc}$         |
| Median half-mass radius                        | $3.08 \mathrm{pc}$         |
| Median tidal radius                            | $34.5 \mathrm{pc}$         |
| Median mass                                    | $8.1 	imes 10^4 M_{\odot}$ |
| Median line-of-sight velocity dispersion       | $5.50 \mathrm{km/s}$       |
|                                                |                            |

Globular clusters are strongly concentrated in the Galaxy, but their system extends out to tens of kpc. They belong to the stellar halo and thick disk populations.

They are old, and generally metal-poor: fossil evidence from the early phases of Galaxy formation.



Projected distribution of the 143 known globular clusters with Galactic coordinates



# Disk and Halo GC Subsystems (Zinn 1985)

Bimodal metallicity distributions are common in globular cluster systems





#### **Selection Effects:**

Missing clusters at low Galactic latitudesMissing intrinsically faint clusters far away

1295 S. DJORGOVSKI AND G. MEYLAN: THE GALACTIC GLOBULAR CLUSTER SYSTEM





1295

FIG. 3. Projected distribution of clusters in absolute Galactic latitude bins. Different symbols correspond to different samplings of the same data. Here the (often poorly known) distances to clusters are not important. Again, a central flattening is seen. Extrapolating the trend from large values of  $|b_{\rm fl}|$  inwards, and multiplying by the corresponding solid angle at low latitudes, indicates that at most ~10–20 are still missing in the obscured areas. FIG. 4. A plot of the cluster absolute magnitude,  $M_V$ , vs the estimated extinction in the V band,  $A_V$ , in magnitudes. Symbol size is proportional to the cluster concentration, c. Only very concentrated clusters are seen under a high obscuration. This is clearly a selection effect, although there is a real correlation between c and  $R_{gc}$  or  $Z_{gg}$ , which in turn correlate with  $A_V$ . Faint clusters are also missing at high extinction, but this may be largely the luminosity function effect.



#### **Correlations of GC Parameters**

TABLE 1. Matrix of the correlation coefficients.

|                           | $M_V$          | c      | $\log r_c$ | $\log r_h$ | $\mu_V(0)$ | $\langle \mu_V \rangle_h$ | $\log  ho_0$  | $\log t_{rc}$ | $\log t_{rh}$       | [Fe/H] | $\log \sigma$ | $\log R_{gc}$ | $\log Z_{gp}$ |                           |
|---------------------------|----------------|--------|------------|------------|------------|---------------------------|---------------|---------------|---------------------|--------|---------------|---------------|---------------|---------------------------|
| M <sub>V</sub>            | 1              | -0.435 | 0.327      | 0.158      | 0.634      | 0.696                     | -0.486        | 0.028         | -0.290              | -0.041 | -0.715        | 0.292         | 0.198         | $M_V$                     |
| с                         | -0.475         | 1      | -0.889     | -0.461     | -0.730     | -0.498                    | 0.812         | -0.853        | -0.385              | 0.106  | 0.334         | -0.469        | -0.400        | c                         |
| log re                    | 0.339          | -0.890 | 1          | 0.709      | 0.827      | 0.638                     | -0.929        | 0.975         | 0.678               | -0.272 | -0.327        | 0.661         | 0.622         | $\log r_c$                |
| $\log r_h$                | 0.062          | -0.471 | 0.689      | 1          | 0.769      | 0.819                     | -0.809        | 0.657         | 0.899               | -0.226 | -0.414        | 0.580         | 0.596         | $\log r_h$                |
| $\mu_V(0)$                | 0.537          | -0.808 | 0.853      | 0.672      | 1          | 0.908                     | -0.976        | 0.681         | 0.480               | -0.252 | -0.803        | 0.601         | 0.578         | $\mu_V(0)$                |
| $\langle \mu_V \rangle_h$ | 0.642          | -0.542 | 0.597      | 0.730      | 0.829      | 1                         | -0.840        | 0.479         | 0.485               | -0.145 | -0.853        | 0.514         | 0.503         | $\langle \mu_V \rangle_h$ |
| $\log \rho_0$             | -0.390         | 0.854  | -0.946     | -0.720     | -0.969     | -0.744                    | 1             | -0.823        | -0.623              | 0.271  | 0.650         | -0.631        | -0.615        | $\log \rho_0$             |
| log tre                   | 0.059          | -0.832 | 0.979      | 0.711      | 0.753      | 0.501                     | -0.873        | 1             | 0.658               | -0.201 | -0.141        | 0.558         | 0.545         | $\log t_{rc}$             |
| logtrh                    | -0.283         | -0.383 | 0.669      | 0.905      | 0.441      | 0.418                     | -0.568        | 0.694         | 1                   | -0.258 | -0.024        | 0.511         | 0.584         | log trh                   |
| [Fe/H]                    | -0.010         | 0.080  | -0.275     | -0.193     | -0.237     | -0.146                    | 0.257         | -0.219        | -0.236              | 1      | 0.216         | -0.426        | -0.534        | [Fe/H]                    |
| $\log \sigma$             | -0.688         | 0.327  | -0.314     | -0.330     | -0.774     | -0.796                    | 0.555         | -0.119        | 0.029               | 0.147  | 1             | -0.129        | -0.131        | $\log \sigma$             |
| log Rac                   | 0.221          | -0.447 | 0.640      | 0.478      | 0.486      | 0.358                     | -0.546        | 0.550         | 0.492               | -0.420 | -0.097        | 1             | 0.788         | $\log R_{g}$              |
| $\log Z_{gp}$             | 0.092          | -0.361 | 0.584      | 0.467      | 0.450      | 0.329                     | -0.511        | 0.524         | 0.529               | -0.506 | -0.062        | 0.756         | 1             | $\log Z_{gg}$             |
|                           | M <sub>V</sub> | с      | $\log r_c$ | log rh     | $\mu_V(0)$ | $\langle \mu_V \rangle_h$ | $\log \rho_0$ | log tre       | log t <sub>rh</sub> | [Fe/H] | $\log \sigma$ | $\log R_{gc}$ | $\log Z_{gp}$ |                           |

Upper right: Pearson linear regression correlation coefficients Lower left: Spearman rank correlation coefficients

Djorgovski & Meylan 1994



#### **Velocity Dispersion Correlations**



# **Stellar Populations in Globular Clusters**



• Used to: (1) test the stellar evolution theory; (2) measure the ages as a cosmological constraint; (3) probe the interplay of stellar dynamics



# **Ages of Globular Clusters**

- We measure the age of a globular cluster by measuring the magnitude of the main sequence turnoff or the difference between that magnitude and the level of the horizontal branch, and comparing this to stellar evolutionary models of which estimate the surface temperature and luminosity of a stars as a function of time
- There are a fair number of uncertainties in these estimates. including errors in measuring the distances to the GCs and uncertainties in the isochrones used to derive ages (i.e., stellar evolution models)
- Inputs to stellar evolution models include: oxygen abundance [O/ ٠ Fe], treatment of convection, He abundance, reaction rates of <sup>14</sup>N  $+ p \rightarrow {}^{15}O + \gamma$ , He diffusion, conversions from theoretical temperatures and luminosities to observed colors and magnitudes, and opacities; and especially distances



#### **Globular Cluster Ages From Hipparcos Calibrations of Their Main Sequences**



Examples of g.c. main sequence isochrone fits, for clusters of a different metallicity (Graton et al.)

Age =  $11.8^{+2.1}_{-2.5}$ Gyr clusters:

Age =  $12.3^{+2.1}_{-2.5}$  Gyr

#### Range of possible GC ages (Chaboyer & Krauss 2003)



#### **Blue Stragglers: Stellar Merger Products?**



Commonly seen in globular clusters, as an extension of the main sequence, and with masses up to twice the turnoff mass

#### White Dwarf Cooling Curves

- White dwarfs are the end stage of stellar evolution for stars with initial masses  $< 8~M_{\odot}$
- They are supported by electron degeneracy pressure (not fusion) and are slowly cooling and fading as they radiate
- We can use the luminosity of the faintest WDs in a cluster to estimate the cluster age by comparing the observed luminosities to theoretical cooling curves
- Theoretical curves are subject to uncertainties related to the core composition of white dwarfs, detailed radiative transfer calculations which are difficult at cool temperatures
- White dwarfs are faint so this is hard to do. Need deep HST observations
- Only been done for one globular cluster, consistent with the ages of GCs found from the main sequence turnoff luminosities, would be nice if there were more

#### An Example: White Dwarf Sequence of M4



#### An Example: WD Luminosity Function of M4



Observed WD luminosity function compared to theoretical predictions for various ages from Hansen *et al.* (2002)

| Characteristic      | Crossing time $t_c \simeq 10^6$ yr   |  |  |  |  |  |
|---------------------|--------------------------------------|--|--|--|--|--|
| Dynamical           | Relaxation time $t_r \simeq 10^8$ yr |  |  |  |  |  |
| <b>Time Scales:</b> | Evolution time $t_e \sim 10^{10}$ yr |  |  |  |  |  |

**Open clusters:**  $t_c \sim t_r < t_e \rightarrow$  quickly dissolved

**Globular clusters:**  $t_c \ll t_r \ll t_e \rightarrow$  a variety of dynamical evolution states must be present

**Ellipticals:**  $t_c \ll t_r \sim t_e \rightarrow$  dynamical evolution not driven by 2-body relaxation

GCs represent an interesting class of dynamical stellar systems in which various dynamical processes take place on timescales shorter then the age of the universe. Thus, they are unique laboratories for learning about 2-body relaxation, mass segregation from equipartition of energy, stellar collisions and mergers, core collapse, etc.

#### King Models: A Good Description of GC Structure



Assume isotropic, Maxwellian velocity distribution, in a cluster embedded in the Galactic tidal field. Parametrized by the mass, concentration (alias central potential), and tidal radius.

# Core Collapse, aka The Gravothermal Catastrophe



The only way to arrest the collapse is to provide *a source of energy* in the center, to replace the escaped heat. In the case of (proto)stars, this is accomplished by thermonuclear reactions.

In the case of globular clusters, it is accomplished by *hard binaries*.

# **Evolution Towards the Core Collapse**

King models are quasi-stationary. However, above a certain concentration, they become gravothermally unstable. The core shrinks, and the concentration increases. The density profile becomes a power-law cusp.

(Numerical simulation of a collapsing cluster, from H. Cohn)



# Examples of 3-Body Interactions

# **Examples of 3-Body Interactions**



#### GC Surface Brightness Profiles: The Evidence for Core Collapse



#### **Core Properties of Globular Clusters: Driven by the Evolution Towards the Core Collapse?**







#### **Tidal Evaporation of Globular Clusters**



Stars evaporate from a cluster as they cross the Roche lobe boundary (equipotential surface)

All of the stellar content of the halo is probably due to dissolved clusters and dwarf galaxies

#### ω Centauri: Overdensities of Tidal-Tail Stars

Galaxy



Combes et al., 1999, A&A, 352, 149

N-body simulations of globular clusters tides

Once the particles are unbound, they slowly drift along the GC path and form 2 huge tidal tails





# **Tidal Dissolution of Open Clusters**

