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Material in this class is taken mostly from Binney & Tremaine Chapter 8.

Previously we derived the collisionless Boltzmann equation. The key assumption of that equation
was that we could define a volume of phase space that contained N � 1 stars, and for which ∇Φ
was the same for all stars. Eventually this must break down: if stars have close encounters then the
accelerations of two stars can differ significantly even though they are very nearby. We previously
derived the relaxation time for a system of stars. On timescales longer than this, the assumptions
of the collisionless Boltzmann breakdown and stellar encounters become important. In systems
such as globular clusters, which are as old as the Universe (more or less), the relaxation time is
exceed (significantly).

1 Stellar “Encounters”

Stellar encounters can take numerous forms1:

Relaxation Stars perform a random walk away from their initial orbit due to large numbers
of relatively weak encounters with other stars. The system evolves towards higher entropy
(which for a gravitating system means a dense core with a diffuse halo, not a uniform density
as in an ideal gas).

Equipartition From elementary kinetic theory we know that encounters tend to produce equipar-
tition of energy. Consider a system of stars, with differing masses, formed through violent
relaxation such that the position and velocity of stars is independent of mass. The more mas-
sive stars then have higher energy on average since K = 1

2mv
2. Massive stars will therefore

tend to lose energy to lower mass stars and they must therefore sink towards the center of
the system (lower gravitational potential).

Escape Occasionally an encounter will leave a star with enough energy to escape to infinity. This
leads to a slow but irreversible leakage of stars from the system—the only stable state immune
from this is two stars in a Kepler orbit. Binney & Tremaine give a straightforward derivation
of the timescale for such evaporation.

1Binney & Tremaine give significantly more discussion of these—you’re encouraged to read it.
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Inelastic encounters If two stars pass close enough to raise significant tides in each other, or, in
extreme cases, to collide head on, kinetic energy can be dissipated—sometimes resulting in
the formation of a binary system.

Binary formation in 3-body encounters A binary cannot form in an encounter between two
stars (since it’s just a Kepler problem with an initially unbound orbit and so the stars just
move along hyperbolas), but with a third body nearby can leave two bodies bound with the
third ejected with higher energy.

Interaction with primordial binaries Many stars probably form as part of a binary system.
Stars encountering a binary can exchange energy with it, either increasing or decreasing the
energy of the binary. Energy conservation therefore implies a flow of energy to or from the
cluster as a whole. Since binaries are typically very tightly bound (compared to other stars
in the system) they can significantly influence the structure of a cluster.

2 Exact Results in Kinetic Theory

If we drop the assumption of collisionless evolution there are still a few exact results that can be
obtained (although in practice they’re not all that useful. . . )

2.1 Virial Theorem

The virial theorem still holds for any system of N mutually gravitating particles. Suppose we have
N particles with masses mα and positions xα, α = 1 . . . N . The moment of inertia tensor is

Ijk =
N∑
α=1

mαx
α
j x

α
k , (1)

and the 2nd time derivative is

d2Ijk
dt2

=
N∑
α=1

mα(ẍαj x
α
k + 2ẋαj ẋ

α
k + xαj ẍ

α
k ). (2)

The acceleration of particle α is

ẍjα =
N∑
β=1

β 6=α

Gmβ(xβj − xαj )
|xβ − xα|3

. (3)

This allows us to write the moment of interia as

d2Ijk
dt2

= 2
N∑
α=1

mαẋ
α
j x

α
k +

N∑
α,β=1

β 6=α

Gmαmβ

|xβ − xα|3
{

(xβj − x
α
j )xαk + (xβk − x

α
k )xαj

}
. (4)
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The first term on the right is 4Kjk where K is the kinetic energy tensor. The second sum is related
to the potential energy tensor W :

Wjk = G
N∑

α,β=1

β 6=α

mαmβ

xαj (xβk − xαk )
|xβ − xα|3

= −1
2

G
N∑

α,β=1

β 6=α

mαmβ

(xαj − x
β
j )(xβk − xαk )

|xβ − xα|3
, (5)

where we got the second line by switching dummy indices in the first line and adding it to the first
line (factor of 1

2 is inserted to avoid double counting). Putting this all together gives us

1
2

d2Ijk
dt2

= 2Kjk +Wjk. (6)

Assuming an equilibrium system (time derivatives go to zero) and taking the trace of this equation
will give the usual scalar virial theorem.

2.2 Liouville’s Theorem

Given a system of N stars we can describe its state at any time by a single point in a 6N dimen-
sionless space known as Γ-space. This fully specifies the positions and velocities of all stars. This
state is known as the microstate. In practice, we usually don’t care about the microstate—instead
we care only about more macroscopic properties. Formally, we can imagine specifying some system
with known macroscopic properties (density distribution, velocity distribution, etc.) and making
many realizations of this macrostate using N particles, each giving a different microstate. This
collection of microstates is known as an ensemble, and can be described by the density of Γ-points
in Γ-space.

If a single particle has position in 6-dimensional phase space wα ≡ (xα,vα) then the Γ-point for a
collection of such particle is specified by the N vectors w1, . . . ,wN . We can define a distribution
function giving the probability that a Γ-point is found in a unit volume of Γ-space at time t by
f (N)(w1, . . .wN , t), normalized such the its integral over the 6N -dimensional Γ-space is unity. The
evolution of this N -particle distribution function is governed by continuity equation, since a Γ-point
must drift smoothly through Γ-space:

∂f (N)

∂t
+

N∑
α=1

{
∂

∂xα

[
f (N) dxα

dt

]
+

∂

∂vα

[
f (N) dvα

dt

]}
= 0. (7)

To simplyify note that dxα/dt = vα, ∂vα/∂xα = 0 (indepdent coordinates) and, for conservative
forces, dvα/dt=−∂Φα

∂xα
so that ∂(dvα/dt)/∂vα = 0. This leaves us with

∂f (N)

∂t
+

N∑
α=1

[
vα ·

∂f (N)

∂xα
− ∂Φα

∂xα
· ∂f

(N)

∂vα

]
= 0, (8)

which, in terms of the Lagrangian derivative becomes

df (N)

dt
= 0. (9)
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So, flow of Γ-points through Γ-space is incompressible—this is Liouville’s theorem.

2.3 BBGKY Hierarchy

The Liouville and collisionless Boltzmann equations are related. To see this, integrate theN -particle
distribution function over all wα except one (it doesn’t matter which one, they’re all equivalent):

f (1)(w1, t) =
∫
f (N)(w1, . . .wN , t)d6w2 . . . d6wN , (10)

then do the same for eqn. (8)

∂f (1)(w1, t)
∂t

+ v1 ·
∂f (1)(w1, t)

∂x1
=
∫
∂Φ1

∂x1
· ∂f

(N )
∂v1

d6w2 . . . d6wN , (11)

where we’ve assumed that f (N ) → 0 as |xα| → ∞. Assuming that f (N) is a symmetric function
of w1, . . . ,wN (which is true if all the stars have the same mass—we could solve this in the more
general case if we really wanted to) then

Φα =
∑
β 6=α

Φαβ,whereΦαβ = − Gm
|xα − xβ|

. (12)

This let’s us write

∂f (1)(w1, t)
∂t

+ v1 ·
∂f (1)(w1, t)

∂x1
= (N − 1)

∫
∂Φ12

∂x1
· ∂f

(N )
∂v1

d6w2 . . . d6wN . (13)

We can re-write this in terms of the 2-particle distribution function:

f (2)(w1,w2, t) =
∫
f (N)(w1, . . . ,wN , t)d6w3 . . . d6wN , (14)

giving
∂f (1)

∂t
+ v1 ·

∂f (1)

∂x1
= (N − 1)

∫
∂Φ12

∂x1
· ∂f

(2)

∂v1
d6w2. (15)

We could use a similar approach to express the evolution of f (2) in terms of the 3-particle distri-
bution function, f (3) and the evolution of f (n)) in terms of f (n+1). This sequence of equations is
known as the BBGKY2 hierarchy. It’s no easier to solve than the Liouville equation unless we can
truncate the hierarchy by guessing an approximate form for some f (n+1). For example, writing

f (2)(w1,w2, t) = f (1)(w1, t)f (1)(w2, t) + g(w1,w2, t), (16)

where g(w1,w2, t) is known as the two-particle correlation function and measures the probability
in excess of that expected from the 1-particle distribution functions of finding a particle at w1 due
to a particle at w2, allows us to derive the following (see Binney & Tremaine for details):

∂f(x,v, t)
∂t

+v·∂f(x,v, t)
∂x

−∂Φ(x)
∂x

·∂f(x,v, t)
∂v

= −N2Gm
∫
∂g(x,v,x2,v2, t)

∂v
· ∂
∂x2

(
1

|x− x2|

)
d3x2d3v2,

(17)
assuming N � 1. This shows that the collisionless Boltzmann equation follows from assuming that
the two-particle correlation function is zero—this makes sense as a zero correlation function implies
that individual particles to not influence other particles directly.

2Bogoliubov, Born, ,Green, Kirkwood & Yvon.
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3 Meet the Fokker-Planck Equation

3.1 Master Equation

With the collisionless Boltzmann equation the Lagrangian derivative of the distribution function is
zero. When collisions are important we can therefore write

df
dt

= Γ[f ], (18)

where Γ[f ] is a collision term which describes the rate of change of f due to encounters. The value
of the collision term is a function of x, v and t and therefore of f(x,v, t).

Assume that Ψ(w,∆w)d3∆w∆t is the probability that a star with coordinates w is scattered into
some new volume of phase space d3∆w centered on w + ∆w during a time interval ∆t. Ψ (the
scattering cross-section) includes the effects of encounters with other stars, but not of the smooth
potential. We consider a test star being scattered by a bunch of field stars. Stars are scattered out
of a unit volume of phase space at a rate

∂f(w)
∂t

∣∣∣∣
−

= −f(w)
∫

Ψ(w,∆w)d3∆w, (19)

and some other stars are scattered into this volume at a rate
∂f(w)
∂t

∣∣∣∣
+

=
∫

Ψ(w −∆w,∆w)f(w −∆w)d3∆w. (20)

The sum of these two is the collision term Γ[f ]. This gives us the master equation

df
dt

= Γ[f ] =
∫

[Ψ(w −∆w,∆w)f(w −∆w)−Ψ(w,∆w)f(w)]d3∆w. (21)

3.2 Fokker-Planck Equation

When we derived the relaxation timescale for a stellar system we found that the contribution to the
mean square velocity perturbation from each logarithmic interval of impact parameter was the same
(hence the appearance of the ln Λ = lnR/bmin term). Therefore, if R � bmin most of the velocity
perturbation comes from weak encounters with δv � v. This dominance of weak encounters allows
us to find a simplified form for the collision term by expanding in a Taylor series:

Ψ(w −∆w,∆w)f(w −∆w) = Ψ(w,∆w)f(w)−
6∑
i=1

∆wi
∂

∂wi
[Ψ(w,∆w)f(w)]

+
1
2

6∑
i,j=1

∆wiwj
∂2

∂wi∂wj
[Ψ(w,∆w)f(w)] +O(∆v3). (22)

Truncating after the second-order terms is known as the Fokker-Planck approximation. Doing the
integral over ∆w then gives us:

Γ[f ] = −
6∑
i=1

∂

∂wi
[f(w)D(∆wi) +

1
2

6∑
i,j=1

∂2

∂wi∂wj
[f(w)D(∆wi∆wj)], (23)
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where the diffusion coefficients D are define as

D(∆wi) ≡
∫

∆wiΨ(w,∆w)d3∆w, (24)

and give the expectation for the change in wi per unit time. (Higher order terms in the Taylor
series could be kept but their diffusion coefficients are generally much smaller.) The useful feature
of the Fokker-Planck equation is that the dependence on the field star distribution function is
entirely within the diffusion coefficients. Once the diffusion coefficients are know the Fokker-Planck
equation is a simple differential equation, rather than an integro-differential equation (which are,
in general, bad news). Because of this, the Fokker-Planck equation (with a couple of additional
approximations) is the main tool to study the slow evolution of stellar systems driven by encounters.

The diffusion coefficients can be evaluated (see Binney & Tremaine, Appendix 8.A):

D(∆vi) = 4πG2ma(m+ma) ln Λ
∂

∂vi
h(v

D(∆vi∆vj) = 4πG2m2
a ln Λ

∂2

∂vi∂vj
g(v, (25)

where the Rosenbluth potentials are:

h(v) =
∫
fa(va)d3va
|v − va|

; g(v) =
∫
fa(va)|v − va|d3va, (26)

where fa(va) is the field star distribution function and

Λ =
bmaxv

2
typ

G(m+ma)
. (27)

The diffusion coefficients have the same form as Chandrasekhar’s expression for dynamical friction—
this is a good example of the fluctuation-dissipation theorem at work.

4 Evolution of Spherical Systems

Fokker-Planck codes have been applied extensively to the evolution of globular clusters and can de-
termine (very accurately with modern calculations) the rates of various encounter-driven processes.
The timescales for these processes all scale with the median relaxation time for the initial cluster.
(Read Binney & Tremaine for a more detailed discussion of these estimates.)

4.1 Evaporation & Ejection

Ejection, in which a star is kicked up to above the escape velocity by a single encounter, turns out
to have a much longer timescale than evaporation (a random walk up to escape velocity due to
many weak encounters). Estimates of the timescales for these processes are:

tej = 1.1× 103 ln(0.4N)trh, (28)
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and
tevap ≈ 300trh. (29)

Tidal fields (such as that from the Galaxy) can enhance the evaporation rate significantly (they
effectively lower the potential barrier needed to escape the cluster).

4.2 Core Collapse

Calculations of the evolution of spherical systems (such as globular clusters) all predict a runaway
collapse at the center of the cluster such that the central density becomes infinite after finite
time. This is known as core collapse. Core collapse is a two-stage process. Initially, evaporation
causes some stars to gain energy an populate a halo. To conserve energy, the core of the cluster
must contract. The second stage is a result of the gravothermal instability (see §8.2 of Binney &
Tremaine)—the negative heat capacity of gravitational systems causes the hot core to lose energy
to the cooler surrounding halo and thereby grow hotter still, leading to a runaway collapse.

4.3 Equipartition

Since no real star cluster will consists of stars all having the same mass, we should consider equipar-
tition also. Equipartiation leads to lower mass stars having higher velocities than massive stars
(on average), making them more prone to evaporation. Therefore, globular cluster tend to lose low
mass stars preferentially. Since low mass stars have high mass-to-light ratios, their preferential loss
decreases the mass-to-light ratio of the cluster as a whole, and may (partially) explain why glob-
ular clusters have lower mass-to-light ratios than comparably old galactic systems (e.g. elliptical
galaxies).

4.4 Binary Stars

Binary stars can be separated into two classes, soft and hard based upon whether the magnitude of
their energy is less than or greater than the typical kinetic energy of a field star. We may therefore
expect that soft binaries are prone to being broken apart by a passing field star, while hard binaries
should not be. This is (more or less) correct, and hard binaries instead tend to transfer energy to
the passing star. A good rule of thumb (known as Heggie’s law) is that “hard binaries get harder
and soft binaries get softer” as a result of encounters. The rate of hardening of hard binaries is
approximately

〈Ė〉 = −5.1
νG2m3

σ
. (30)

To see that this makes sense, consider that the radius within which a field star must pass to
significantly affect the binary is r∼GM

σ2 . The number of such encounters per unit time is therefore
Ṅ=νσr2=νG2M2

σ3 . Finally, the change in energy will be of order the energy of the field star mσ2

so 〈Ė〉 = Ṅmσ2 ∼ νG2m3/σ. The average energy change per relaxation time is then 〈Ė〉trelax ≈
0.2mσ2 which is indepdent of the hardness of the binary (harder binaries have smaller cross-sections
for encounters, but the energy changes involved are larger—the two effects cancel).
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4.5 Inelastic Encounters

Direct collisions between stars are not too well understood, but may be important in the centers
of globular clusters during core collapse. If a collision is able to dissipate enough energy then the
stars may actually coallesce. This can lead either to runaway growth, via further coallescence, if
the collision timescale is shorter than the nuclear evolution timescale of the (now more massive)
star, or to evolution into a neutron star/black hole if the nuclear evolution timescale gets reduced
below the collision timescale.

For near-collisions, tidal forces can raise large tides on the stars, which dissipates some of the orbital
energy. The effect of this process, repeated each time stars in a binary pass through pericenter,
is to gradually circularize and harden the binary. This tidal capture process can be a dominant
mechanism for forming binaries in globular clusters.

4.5.1 Binaries & Core Collapse

Hard binaries are likely responsible for stopping core collapse by providing a heat source in the
cluster center. As core collapse proceeds, more and more binaries are formed through inelastic
encounters. These hard binaries continue to get harder through encounters with field stars. This
implies that the field stars are gaining energy at the expense of the binaries. This energy, once
shared with the cluster as a whole (another equipartition process) acts as a heat source which
cools (due to the negative heat capacity) the central core and helps halt the flow of energy to the
surrounding halo, thus preventing the gravothermal instability.

8


