

Deriving the Scaling Relations

Start with the Virial Theorem:

$$\frac{GM}{\langle R\rangle} = k_E \frac{\langle V^2 \rangle}{2}$$

Now relate the observable values of R, V (or σ), L, etc., to their "true" mean 3-dim. values by simple scalings:

$$R = k_R \langle R \rangle \qquad V^2 = k_V \langle V^2 \rangle \qquad L = k_L I R^2$$

One can then derive the "virial" $R = K_{SR}V^2I^{-1}(M/L)^{-1}$ versions of the FP and the TFR:

Where the "structure" coefficients are:

$$K_{SR} = \frac{k_E}{2Gk_Rk_Lk_V}$$

$$K_{SL} = \frac{k_E^2}{4G^2k_R^2k_Lk_V^2}$$

 $L = K_{SL}V^4 I^{-1} (M/L)^{-2}$

Deviations of the observed relations from these scalings must indicate that either some k's and/or the (M/L) are changing

Galaxy Scaling Laws

- When correlated, global properties of galaxies tend to do so as power-laws; thus "scaling laws"
- They provide a quantitative means of examining physical properties of galaxies and their systematics
- They reflect the internal physics of galaxies, and are a product of the formative and evolutionary histories
 - Thus, they could be (and are) different for different galaxy families
 - We can use them as a fossil evidence of galaxy formation
- When expressed as correlations between distance-dependent and distance-independent quantities, they can be used to measure relative distances of galaxies and peculiar velocities: thus, it is really important to understand their intrinsic limitations of accuracy, e.g., environmental dependences
- Their origins are generally not yet well understood

The Tully-Fisher Relation (TFR)

• A well-defined luminosity vs. rotational speed (often measured as a H I 21 cm line width) relation for spirals:

 $L \sim V_{rot}^{\gamma}, \gamma \approx 4$, varies with wavelength

Or: $M = b \log (W) + c$, where:

- -M is the absolute magnitude
- W is the Doppler broadened line width, typically measured using the HI 21cm line, corrected for inclination $W_{\text{true}} = W_{\text{obs}}/sin(i)$
- Both the slope *b* and the zero-point *c* can be measured from a set of nearby spiral galaxies with well-known distances
- The slope b can be also measured from any set of galaxies with roughly the same distance - e.g., galaxies in a cluster even if that distance is not known
- Scatter is $\sim 10\text{--}20\%$ at best, better in the redder bands

Tully-Fisher Relation in Diferent Bands

Why is the TFR So Remarkable?

- Because it connects a property of the dark halo the maximum circular speed with the product of the net integrated star formation history, i.e., the luminosity of the disk
- Halo-regulated galaxy formation/evolution?
- The scatter is remarkably low even though the conditions for this to happen are known not to be satisfied
- There is some important feedback mechanism involved, which we do not understand yet
- Thus, the TFR offers some important insights into the physics of disk galaxy formation

Deriving the Tully-Fisher Relation

In part, Tully-Fisher relation reflects dynamics of a disk galaxy. Estimate the luminosity and maximum circular velocity of an exponential disk of stars:

Empirically, disk galaxies have an		$I(\mathbf{R})$ -	$I(0) e^{-R/h_R}$
exponential surface brightne	ss profil	le: $I(K)$ =	I(0) C
Integrate this across annuli to get the total luminosity:	$L \propto \int$	$\int 2\pi RI(0)e$	$^{-R/h_R}dR$
to get the total fulfillionty.	C)	$L \propto I(0)h_{R}^{2}$

If the mass of the exponential disk dominates the rotation curve, then the enclosed mass within radius R will be proportional to the enclosed luminosity: R

$$M(R) \propto L(R) \propto \int_{0}^{R} 2\pi R' I(0) e^{-R'/h_{R}} dR'$$

Recall the TFR formula:

 $L = K_{SL} V^4 I^{-1} (M/L)^{-2}$

So, each of the ingredients forming the proportionality coefficient (surface brightness, scale length, (M/L), spinup parameter) shows a huge spread, and they do not correlate ...

... and yet, a nearly scatterless TFR results!

The Kormendy Relation

The Faber-Jackson Relation

Analog of the Tully-Fisher relation for spirals, but instead of the peak rotation speed V_{max} , measure the velocity dispersion. This is correlated with the total luminosity:

Can We Learn Something About the Formation of Ellipticals From the Kormendy Relation?

From the Virial Theorem, $m\sigma^2 \sim GmM/R$ Thus, the dynamical mass scales as $M \sim R\sigma^2$ Luminosity $L \sim I R^2$, where *I* is the mean surface brightness Assuming $(M/L) = const., M \sim I R^2 \sim R\sigma^2$ and $I R \sim \sigma^2$

Now, if ellipticals form via dissipationless merging, the kinetic energy per unit mass ~ $\sigma^2 \sim const.$, and thus we would predict the scaling to be $R \sim I^{-1}$

If, on the other hand, ellipticals form via dissipative collapse, then M = const., surface brightness $I \sim M R^{-2}$, and thus we would predict the scaling to be $R \sim I^{-0.5}$

The observed scaling is $R \sim I^{-0.8}$. Thus, *both* dissipative collapse and dissipationless merging probably play a role

Metallicity-Luminosity Relation also known as the Color-Magnitude Relation

There is a relation between the color (a metallicity indicator) and the total luminosity or velocity dispersion for E galaxies:

Brighter and dynamically hotter galaxies are redder. This could be explained if small E galaxies were younger or more metal-poor than the large ones. More massive galaxies could be more effective in retaining and recycling their supernova ejecta.

Towards the Discovery of the FP

There were two motivational streams:

- 1. How many statistically significant properties describe elliptical galaxies, and how are they related? Or: what is the "manifold of elliptical galaxies"?
 - The pioneering work by Brosche (1973), Brosche & Lentes (1982)
- 2. What is the "2nd parameter" in the F-J relation, so that it can be improved as a distance indicator for early-type galaxies?
 - The Davis-Djorgovski-Kent mini-survey (1982/3) [6 parameters?]
 - The Fall & Efstathiou paper (1984) [L- σ -Mg plane]
 - Lauer's study of E-galaxy cores (1986) [almost!]

The actual discovery/realization:

Dressler et al. (1987) [the "7 Samurai"]: the D_n - σ relation Djorgovski & Davis (1987): a plane in the *L*-*R*- σ - μ space

Fundamental Plane Relations

• A set of bivariate scaling relations for elliptical galaxies, including relations between distance dependent quantities such as radius or luminosity, and a combination of two distanceindependent ones, such as velocity dispersion or surface

 $\frac{1}{2}$

ь

brightness

- In a set of ~ 10 independently measured global parameters, there are only 2 statistically independent ones
- Scatter $\sim 10\%$, but it could be lower?

Different Views of the FP

Commonly expressed as a bivariate scaling relation $R \sim \sigma^{1.4} I^{-0.8}$ Where R is the radius, I the mean surf. brightness, σ the velocity disp.

Different Views of the FP

FP in the K-Band (~ nearly bolometric)

Stellar Population Variables Also

This implies that the chemical enrichment (and star formation?) histories of ellipticals are regulated by their global dynamical and structural parameters

... And so are their central SMBHs (many authors...)

Fundamental Plane and M/L Ratios

Write the FP scaling relation as: $R \sim \sigma^A I^B$

Where the observed values are $A \sim 1.4$, $B \sim -0.8$, uncertain by about 10%, and depending on the bandpass

Recall from Virial Theorem: $\langle R \rangle \sim \langle V^2 \rangle \langle I \rangle^{-1} (M/L)^{-1}$

Then
$$k_V^{-1} k_I k_R (M/L) \sim \sigma^{A-2} I^{-B-1}$$

If all ellipticals have the same structure, i.e., they are just scaled versions of each other (a homologous family), then all $k_x = const.$ and all change must be in (M/L). Approximately,

 $(M/L) \sim L^{\alpha}$, where $\alpha \sim 0.2$ (visible) or ~ 0.1 (IR)

But we know that E's are not a homologous family, so the tilt of the FP must have complex reasons

The SMBH - Host Galaxy Correlations

From Virial Theorem to FP

- Galaxies must be on a "Virial Theorem Plane" in the space of mass, mean density, and kinetic temperature
- If galaxies represent a homologous family of structures and had (M/L) = const., then they should follow the VTP: $R \sim \sigma^2 I^{-1}$
- Since they don't, and the observed FP scaling is: $R \sim \sigma^{1.4} I^{-0.8}$, either one or both of these assumptions must be broken

Breaking the Homology: Density Profiles

Fundamental Plane and M/L Ratios

If we *assume* homology and attribute all of the FP tilt to the changes in (M/L), $(M/L) \sim L^{\alpha}$, $\alpha \sim 0.2$ (vis) or ~ 0.1 (IR)

Possible causes: systematic changes in $M_{visible}/M_{dark}$, or in their relative concentrations; or in the stellar IMF

Mass-Based Fundamental Plane

The use of lensing galaxies allows for the determination of their *mass-based* structural parameters (*Bolton et al. 2007*)

Traditional FP fit gives $R \sim \sigma^{1.4} I^{-0.8}$, consistent with other work. *Replacing* the surface brightness I with the *projected mass density* Σ gives a "mass plane" scaling: $R \sim \sigma^{1.8 \pm 0.2} \Sigma^{-1 \pm 0.2}$, consistent with the Virial Theorem, and with a smaller scatter!

This implies a homology of mass (if not light) structures of E's

Environmental Dependence (?)

- FP intercepts (zero-points) are operationally interchangeable with peculiar velocities; zero-point variations would cause spurious V_{pec} 's
 - A highly controversial subject...
- Numerous spectroscopic studies find systematic differences between E's in different density environments
- However, *no convincing evidence* for cluster-to-cluster variations has been found by a number of studies
- Even if we assume that *all* FP-based V_{pec} 's are entirely spurious, due to environmental variations, that would imply the zero-point differences of at most $\sim 10\%$; and clearly that is an overestimate
- Thus, we conclude that for the present-day (cluster) E's, the intercepts of the FP are universal to better than 10% (and could be 0%)

The Remarkably Small Scatter of the FP

Residuals from the FP fit in each of the 3 observable quantities 20 (Djorgovski et al. 1995, 10 and Z consistent with other 0 studies) 0 .3 -.2 .2 -.3 -1 0 1 0 ∆ log r_e $\Delta < \mu >_{e}$ $\Delta \log \sigma$ Total r.m.s. 0.085 0.23 0.054 Est. intrinsic < 0.055 < 0.15 < 0.035

Thus, the intrinsic thickness of the FP is at most a few % (and could be zero) - despite the observed broad variety of kinematical and density profiles, projection effects, etc. etc.

Environmental Dependence

Numerous spectroscopic studies indicate that E's in denser environments are systematically redder, older, more metal-rich, *dimmer* - but it is not clear if coeval E-galaxy populations would have different 0.05 < z < 0.07

FP zero points

For any elliptical galaxy today, big or small, Just Two Numbers determine to within a few percent or less:

- Mass, luminosity (in any OIR band),
- Any consistently defined radius
- Surface brightness or projected mass density
- Derived 3-d luminosity, mass, or phase-space density
- Central projected radial velocity dispersion
- OIR colors, line strengths, and metallicity
- Mass of the central black hole
- ... and maybe other things as well

And they do so regardless of the:

Star formation and merging formative/evolutionary history Large-scale environment

Details of the internal structure and dynamics (including S0's) Projection effects (direction we are looking from)

How Can This Be?

- The implication is that elliptical galaxies occupy only a small, naturally selected, subset of all dynamical structures which are in principle open to them
 - Maximum entropy states? But gravothermal entropy is notoriously difficult to define, and the mechanism to achieve this is completely unknown
 Stellar Mass
 z=0
 orientations, z=0
- Numerical sim's can *reproduce* the observed structures of E's, and the FP, but they *do not explain* them
 Understanding of the origin of ¹/₂
- Understanding of the origin of the small scatter of the FP (or, equivalently, the narrow range of their dynamical structures) is *an outstanding problem*

Dwarf Galaxies

- Dwarf ellipticals (dE) and dwarf spheroidals (dSph) are a completely different family of objects from normal ellipticals they are not just small E's
 - In fact, there may be more than one family of gas-poor dwarf galaxies ...
- Dwarfs follow completely different correlations from giant galaxies, suggestive of *different formative mechanisms*
 - E.g., merging could be less important, but galactic winds more important for dwarfs
- They are generally dark matter (DM) dominated, especially at the faint end of the sequence
- One possible scenario is that SN winds can remove baryons from these low-mass systems, while leaving the DM
- This would naturally lead to a single-parameter family of objects

Fundamental Plane Summary

- The FP correlations are a set of bivariate scaling laws, connecting a number of fundamental properties of early-type galaxies
- They provide unique observational constraints on the structure, formation, and evolution of early-type galaxies
- Their formative processes tightly couple the dynamical structure, chemical enrichment (star formation) history, and growth of their central black holes, in a remarkably robust manner, with just two parameters accounting for many fundamental properties
- The small scatter of the FP implies that ellipticals cover only a very limited, standardized range of dynamical structures; the mechanism of this natural selection is not yet understood
- FP correlations are the sharpest tool in our observational arsenal to study the evolution of early-type galaxies

Parameter Correlations

Dwarfs: A Single-Parameter Family?

Confirmed by the more modern data and analysis, e.g., Woo et al. (2008)

Mass to Light Ratios

The Dark Halos

- Many of galaxy scaling relations may be driven by the properties of their dark halos
- It is possible to infer their properties from detailed dynamical profiles of galaxies and some modeling
- Numerical simulations suggest a universal form of the dark halo density profile (NFW = Navarro, Frenk & White):

$$\frac{\rho(r)}{\rho_{crit}} = \frac{\delta_c}{\left(r/r_s\right)\left(1 + r/r_s\right)^2}$$

(but one can also fit another formula, e.g., with a core radius and a finite central density)

The Galaxy Parameter Space

A more general picture

Galaxies of different families form 2-dim. sequences in a 3+ dimensional parameter space of physical properties, much like stars form 1-dim. sequences in a 2-dim. parameter space of $\{L,T\}$ - this is an equivalent of the H-R diagram, but for galaxies

Comments on the Scaling Relations

- Probably the most challenging thing to understand about these galaxy scaling relations is their *thinness*: we can understand their slopes, but not why they are so sharply defined: intrinsic spread in many coefficients and/or (M/L) should thicken them considerably
 but for some reason it does not. This is still a great mystery.
- Other stellar systems, from globular clusters to clusters of galaxies have fundamental scaling relations of their own
- We use these relations as distance indicators, assuming that they are universal; but small systematic variations in their slopes or intercepts, e.g., in different environments, would introduce systematic distance errors and spurious peculiar velocities

- There is some evidence for that...

Galaxy Scaling Relations and the Standard Galaxian Structures

- In order to achieve the observed small scatter of the scaling relations, it is necessary that galaxies occupy only a narrow range of dynamical structures at any given point in these correlations
- It is also necessary that there is an orderly change of these structure along the galaxian sequences, and the deviations from homology drive the slopes of the scaling relations
- Somehow, this has to be achieved during the processes of galaxy formation an evolution, and this is a real puzzle:
 - Processes of galaxy assembly are messy and diverse
 - It is easy to think of the ways of spoiling the correlations (if they were built in at the start), adding the scatter

... and yet...

Galaxy Formation

- Repeated, random, hierarchical merging is a key process of galaxy assembly
- It involves varying amounts of dissipation
- There are gas inflows into, and outflows from galaxies, driven by star formation
- Supermassive black holes are ubiquitous in normal galaxies; their feedback processes probably play a significant role
- All this is a strong function of the large scale environment

... and vet ...

Galaxies come in a fairly narrow range of standard dynamical structures

Standardized Structures of Galaxies

16 μ

For ellipticals and bulges of spirals, projected density or surface brightness is well described by the empirical

Sersic formula:

$$I(r) = I_0 \operatorname{dex} \left(-r^{1/n} \right)$$

Typical values of the shape index $n \approx 4$

Locally behaves like a power law, typical slopes around -2°

Disks of spirals are well approximated by the n = 1 case, exponential density distributions, both in radius and perpendicularly to the principal plane: $I(R) = I(0) e^{-R/h_R}$

22 ∟ 0.01 0.1 radius

Many Paths Towards Building of an Elliptical Galaxy

Galaxy Structures as Attractors?

Axes represent schematically appropriate structural and dynamical parametrizarions of galaxian forms Initial Conditions 1 Initial Conditions 2 Initial Conditions 3 Initial Conditions 4

Understanding The Galaxian Philogeny

What is the physical mechanism behind the natural selection of galaxian forms?

• Dynamical stability of galaxies

- Many dynamical structures are possible (follow the conservation laws, etc.), internally consistent, but may not be stable
- States of maximum entropy
 - Not yet well defined for stellar dynamics, i.e., collisionless systems dominated by a purely attractive force (gravity)
 - The role of dissipation is hard to fold in
 - Recall that galaxies are open systems

Convergent Evolution of Galaxies?

Aside from the major dichotomies (dwarfs/giants, disks/ spheroids), whose origins we think we understand,

Galaxies evolve into a narrow range of dynamical structures, regardless of the details of their formative histories, and are the same everywhere

What drives this natural selection of galaxian forms?

How Stable Are Galaxies?

There is an infinite number of possible, internally consistent dynamical models for stellar systems, but not all of them are stable.

For example, self-gravitating systems have a negative specific heat, and thus are instable to core collapse (gravothermal catastrophe); this is actually known to occur in globular clusters and protostars.

In some situations, quasi-periodic gravothermal oscillations set in:

16.5

17

(Breeden et al. 1994)

An Example: Henon Instability

Radii of shells containing 10%, ... 90% of the total mass

A Simple Toy Example

Entropy and Galaxian Structures

Could stable galaxian forms be states of *maximum entropy*? The problem is that the classical Boltzmann entropy,

$$S_{\rm B} = -\int f \log f \, dx \, dv$$

does not have a maximum for collisionless, self-gravitating stellar systems: it can be made arbitrarily large by making an extreme core-halo system, with a tightly bound core and a weakly bound halo of a large radius.

But for collisionless systems like galaxies, one could define other forms of entropy, e.g., $S = -\int C(f) dx dv$ where C(f) is a convex function.

Some additional constraints are needed, but there is no compelling solution yet

Constrained Max. Entropy Solution

Recall that this is a constrained solution: it requires a finite size and density core, and a power-law envelope

Compact Nuclei in Dwarf Ellipticals

Summary

- Galaxies universally show a limited range of structural and dynamical forms, despite a broad range of very messy evolutionary histories and processes
 - A convergent evolution / natural selection
- This is demonstrated dramatically in the existence of nontrivial, small-scatter scaling relations such as FP and TFR
 - A narrow range of dynamical structures is necessary for that
- The origin of these regularities is not yet understood
 - Why these structures, and not others?
- Dissipation, feedback, stability and entropy all play roles, but a complete theory is still missing
- Similar puzzles are posed by the scaling relations for galaxy clusters, star clusters, and even stars themselves (HRD)