
Class #10: Dynamics of Disks and Spiral Structure

Structure and Dynamics of Galaxies, Ay 124, Winter 2009

February 5, 2009

Material in this class is taken mostly from Binney & Tremaine (2nd edition) §6.1 & §6.2.

1 Spiral Structure Basics

Spiral arms are a ubiquitous feature of disk galaxies and have therefore attracted many attempts to
explain their origins. This turns out not to be too easy: many theories for their origins have come
and gone (it was thought for a long time that they arose due to the influence of magnetic fields
in the ISM). Bertil Lindblad was the first to realize that spiral arms arise because of interactions
between the orbits and gravitational potentials of stars in the disk.

1.1 The Lin-Shu Hypothesis

Lin and Shu suggested that the spiral arms can be thought of in terms of density waves: com-
pressions and rarefactions in the distribution of stars. Coupling this with Lindblad’s ideas and the
hypothesis that spiral patterns are long lived lead to the Lin-Shu hypothesis that spiral structure is
just a stationary density wave. This allowed theorists to bring all the machinery of wave mechanics
to bear on the problem. Unfortunately, Lin & Shu were only half right: spiral patterns are density
waves, but they’re definately not stationary!

1.2 Geometry

We can characterize spiral structure in terms of rotational symmetry. If I(R,φ) is the osberved
intensity distribution in a disk then if I(R,φ + 2π/m) = I(R,φ) (i.e. a rotation by 2π/m radians
leaves the galaxy looking the same) then the galaxy (and spiral pattern) is said to have m-fold
symmetry and m arms (m > 0). Most galaxies have m = 2—the predominance of two-armed
galaxies is something that any good theory of spiral structure should be able to explain.
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1.2.1 Leading and Trailing Arms

A trailing spiral arm has its tip pointing in the direction opposite to galactic rotation, while a
leading arm has its tip point in the direction of galactic rotation. Observationally its difficult to
figure out which is which because the sense (clockwise or counter-clockwise) of galactic rotation is
uncertain unless the inclination of the galaxy is know—we need to know which side of the galaxy
is closest to us to figure out which way it is rotating. This can be figured out if we can see, for
example, dust obscuration features for example, but is difficult. For the few cases where the sense
of rotation is known unambiguously the arms are trailing.

1.2.2 The Winding Problem

The pitch angle at some radius R is defined as the angle between a tangent to the spiral arm and
the circle R =constant (see Fig. 1). It’s useful to define a function describing a mathematical curve
which runs along the center of an arm. If we have m arms we can write this as

mφ+ f(R, t) = constant (modulo 2π). (1)

The function f(R, t) is known as the shape function and allows us to define a radial wavenumber

k(R, t) ≡ ∂f(R, t)
∂R

. (2)

The sign of k determines whether an arm is leading or trailing: if m > 0 (which we’ll always
assume) and the galaxy rotates in the direction of increasing φ then k > 0 corresponds to a trailing
arm.

The pitch angle is given by

cotα =
∣∣∣∣R ∂φ∂R

∣∣∣∣ , (3)

with the partial derivative evaluated along the curve and so cotα = |kR/m|. Typical galaxies have
α ≈ 10◦–15◦. This is a problem: Suppose we begin, at time t = 0 with a radial arm, f(R, t) = 0,
and “tag” the stars in that arm. The disk rotates with angular speed Ω(R). Since Ω(R) is a
function of radius, the tagged stars do not remain radially aligned. At some later time, our tagged
stars will actually lie along

φ(R, t) = φ0 + Ω(R)t, (4)

with pitch angle

cotα = Rt

∣∣∣∣dΩ
dR

∣∣∣∣ . (5)

For a galaxy with a flat rotation curve, Ω(R)R = 200km/s (for example) at R = 5kpc and after
10 Gyr the pitch angle would be α = 0.14◦. This is much smaller than any observed galaxy and
is known as the winding problem—the material originally making up a spiral arm will be wound
up into an ever tighter spiral by the differential rotation of the disk. We may be able to escape
this problem by postulating that spiral arms are not long-lived (but that is implausible for grand
design spirals) or that they’re not material but instead are stationary density waves.
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Figure 1: Winding up of a material arm with Ω(R) ∝ R−1.
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1.2.3 The Pattern Speed

In the Lin-Shu hypothesis, the sprial arms are a density wave pattern that rotates rigidly. We can
then always move to a rotating frame with some angular frequency Ωp in which the pattern remains
stationary. This pattern speed is not the same as the rotational frequency of the disk. The radius at
which Ωp = Ω(R) is known as the corotation radius. At smaller radii, Ω(R) > Ωp. Observationally,
dust lanes are seen to lie on the inside of arms as defined by bright stars. If this reflects a time
lag between the point of maximum compression of gas and the formation of stars it suggests that
gas is flowing into arms from the inside. Since most arms are trailing this implies that the gas is
rotating faster than the spiral pattern. Therefore, spiral patterns (at least those in grand design
spirals) must be inside corotation.

Measuring the pattern speed is, in general, difficult (its a pattern, not a physical object) and relies
on the assumption that there is in fact a well-defined pattern speed.

1.3 The Anti-Spiral Theorem

Since Newton’s laws of motion and gravitation are time-reversible we know that for any stationary
solution to the equations of motion in a disk which describes a trailing spiral there must be a
corresponding solution describing a leading spiral. (To see this, just reverse the velocities of all
particles at a given instant—this must correspond to the time-reversed solution and so must be
valid.) Given the observed preponderance of trailing arms, this anti-spiral theorem implies that
spiral patterns cannot be understood simply as steady-state solutions to the collisionless Boltzmann
equation and Newtonian gravity. This implies that either i) the solutions are not steady-state (e.g.
they could be triggered by a recent disturbance) or, ii) some non-time-reversible physics (e.g.
dissipation in the ISM) is involved.

1.4 Angular Momentum Transport by Spiral Arm Torques

2 Wave Mechanics of Differentially Rotating Disks

2.1 Kinematic Density Waves

Any particle orbitting in an axissymmetric galaxy will execute a periodic orbit with some well
defined period Tr. During this time, the azimuthal angle will increase by some amount ∆φ (not
necessarily equal to 2π). The corresponding radial and aziumthal frequencies are Ωr = 2π/Tr and
Ωφ = ∆φ/Tr. In general ∆/2π will be irrational resulting in a “rosette” type orbit.

We can consider this orbit in a frame which rotates with frequency Ωp. In this frame, the azimuthal
position of the particle if φp = φ−Ωpt and so in one radial period increases by ∆φp = ∆φ−ΩpTr.
We can therefore choose Ωp so that we have a closed orbit in this rotating frame. Specifically, if
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Figure 2: Behavior of Ω− nκ/m with radius for a model of our Galaxy.

∆φ2πn/m for integers m and n we can make the orbit close after m radial oscillations by choosing

Ωp = Ωφ −
nΩr

m
≈ Ω− nκ

m
, (6)

where we have approximated Ωφ and Ωr by the value for circular orbits Ω and the epicyclic frequency
κ = (rdΩ2/dr + 4Ω2)1/2 (which is the frequency for small radial perturbations). In general, this
function will vary with radius (determined by the rotation curve of the galaxy). Figure 2 plots a
few such curves computed using a model of our own Galaxy. As first noticed by Lindblad, while
most of these curves vary rapidly with radius, the n = 1, m = 2 (or n = 2, m = 4 etc.) curve varies
only slowly. Imagine that it was precisely constant with radius. Then, orbits of this type (those
which close after two radial oscillations) would be stationary in our rotating frame at all radii. By
populating such orbits with stars we can create a stationary pattern in the rotating frame such as
a bar or leading or trailing spiral arms (depending on how the axes of the orbital ellipses vary with
radius). This is a rotating density wave—individual stars are moving in and out of the density wave
as they orbit, but the pattern itself remains fixed (kind of like traffic on the LA freeways—there’s
always a density enhancement of cars in downtown, but individual cars move in and out of it. . . ).

In a real galaxy Ω − nκ/m is never precisely constant so that orbits move at slightly different
frequencies at each radius and any pattern will therefore wind up. We can compute the rate of
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Figure 3: Examples of spiral patterns constructed from orbits which have Ω − 1
2κ constant with

radius.

winding by finding the pitch angle of the pattern. Let φp(R, t) be the angle of the major axis of
the pattern viewed in our rotating frame and let the major axes of the pattern are aligned at t = 0
so that φp(R, 0) = φ0. The drift rate is ∂φp

∂t=Ω− 1
2
κ−Ωp

; so

φp(R, t) = φ0 + [Ω− 1
2
κ− Ωp]t. (7)

From our previous expression for pitch angle we then have

cotα = Rt

∣∣∣∣∣d(Ω− 1
2κ)

dR

∣∣∣∣∣ . (8)

For our Galaxy, R
∣∣∣∣d(Ω− 1

2
κ)

dR

∣∣∣∣ is about 7 km/s/kpc so after 10 Gyr the pitch angle would be about

α = 0.8◦—still much less than observed values but larger than for material arms. If we can slow
down the winding some more this might start to look like a two-armed spiral structure and thereby
explain the prevalence of such structure in observed galaxies.

These structures are known as kinematic density waves as they involve only the kinematics of orbits
in an axisymmetric potential. The density wave itself will, however, produce a non-axisymmetric
component to the potential—a major goal of spiral structure theory is to figure out if this non-
axisymmetric potential can help reduce the rate of winding up of the arms.

2.2 Dispersion Relation

To study the behaviour of density waves we need a three step procedure:

1. Solve Poisson’s equation to find the potential from the density waves;

2. Determine how this potential affects the orbits of the stars;

3. Match the response in stellar density with the input surface density to get a self-consistent
solution.
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To make the problem (somewhat) easier we can assume a razor-thin disk (2 dimensions are easier
than 3) and consider small perturbations so that we can apply a linear perturbation analysis. Self-
consistent density waves are then just the natural linear modes of a disk which can be computed
(numerically at least).

2.2.1 Tight Winding Approximation

The big problem in computing modes of disks is that gravity is a long-range force so perturbations in
all parts of the disk are coupled. However, Kalnajs, Lin & Toomre realised that for tightly wound
disks the long-range coupling is negligible which makes things much easier. This tight-winding,
short-wavelength or WKB approximation is very useful for understanding the properties of density
waves in disks.

Suppose a pattern is describe by a shape function f(R, t) (which gives the azimuthal coordinate
of a curve following the pattern). The difference between adjacent arms at the same azimuthal
position is ∆R where |f(R + ∆R, t)− f(R, t)| = 2π. For tightly wound arms we can approximate
this to get ∆R ∂f

∂R = 2π or

∆R =
2π
|k|

=
2πR
m

tanα, (9)

where k = ∂f/∂R is the wavenumber of the pattern. For pitch angles of between 10◦ and 15◦ this
implies |kR| ≈ 7–11 (for two-armed spirals). The WKB approximation requires |kR| � 1 but is
often a reasonable approximation for smaller |kR|. So, we’re going to use the WKB approximation
but should treat it with some caution.1

2.2.2 Potential of the Spiral Pattern

We can split the surface density into unperturbed, Σ0(R) and perturbed, Σ1(R,φ, t), parts and can
split the perturbed part into a term describing the rapid variation in density in azimuth associated
with arms and a term describing the slow variation in density along an arm:

Σ1(R,φ, t) = H(R, t)ei[mφ+f(R,t)], (10)

where f(R, t) is the shape function and H(R, t) describes the variation in density along an arm.2

This assumes a sinusoidal variation in density with radius, which turns out to be correct in the
linear perturbation regime.

To figure out the potential from this perturbation we first note that the rapid oscillation will mean
that the contributions from distant parts of the perturbation will cancel out. So, we can just

1We need |kR| � 1 for this to work. Axisymmetric, m = 0, modes have zero pitch angle and so are technically
always tightly wound, but don’t necessarily have short wavelengths. In addition, modes with large m � 1 can be
tightly wound even though their radial wavelength isn’t short. We have to keep these caveats in mind also when
applying the WKB approximation.

2The physical density is just the real part of Σ1 of course.
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consider the contribution from the few nearby oscillations. It’s therefore useful to replace the shape
function with a Taylor series about some point (R0, φ0):

Σ1(R,φ, t) ≈ Σaeik(R0,t)(R−R0), (11)

wher
Σa = H(R0, t)ei[mφ0+f(R0,t)]. (12)

(We’ve neglected variations with φ as they’re much slower than radial variations for a tightly wound
pattern.) This looks like a plane wave with wavevector k = kêR. The potential of a plane wave in
a razor-thin disk can be computed analytically (see Binney & Tremaine, p. 441 if you want to run
through the derivation of this):

Φ1(R,φ, z, t) ≈ Φaeik(R0,t)(R−R0)−|k(R0,t)z|, (13)

where Φa=−2πGΣa
|k| . We can then choose R = R0, φ = φ0 and z = 0 to obtain a result for the disk

plane

Φ1(R,φ, t) = −2πG
|k|

H(R, t)ei[mφ+f(R,t)]. (14)

Since we obtained this by Taylor expansion in |kR|−1 the error in the expression is O(|kR|−1).
Taking the derivative of this with respect to R and ignoring the slow variation of the H(R, t) term
we find

∂

∂R
Φ1(R,φ, t) = 2πGsgn(k)H(R, t)ei[mφ+f(R,t)] = 2πGisgn(k)Σ1(R,φ, t), (15)

or
Σ1(R,φ, t) =

isgn(k)
2πG

∂

∂R
Φ1(R,φ, t). (16)

2.2.3 Dispersion Relations

Our remaining tasks are to find the response of the disk to the perturbation and to match this to
the input perturbation for a self-consistent response. It turns out to be easier to treat a fluid disk
rather than a stellar disk3. The basic features are quite similar and we will gain some insight as a
“cold” (i.e. zero velocity dispersion) stellar disk is dynamically equivalent to a zero pressure fluid
disk.

We begin by writing Euler’s equation in cyclindrical coordinates:

∂vR
∂t

+ vR
∂vR
∂R

+
vφ
R

∂vR
∂φ
−
v2
φ

R
= −∂Φ

∂R
− 1

Σd

∂p

∂R

∂vφ
∂t

+ vR
∂vφ
∂R

+
vφ
R

∂vφ
∂φ
− vφvR

R
= − 1

R

∂Φ
∂φ
− 1

ΣdR

∂p

∂φ
, (17)

where we use a surface density Σd since we’re working with a two-dimensional disk. We can choose
a simple equation of state p = KΣγ

d which leads to sound waves propagating in a disk of surface
density Σ0 with speed

v2
s (Σ0) =

(
dp
dΣ

)
= γKΣγ−1

0 . (18)

3The reason is that, in a stellar disk, stars passing through a given point at any time will have come from a range
of radii due to radial perturbations in their orbits. This leads to an averaging over perturbation and tends to reduce
its effects.
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Using these expressions and replacing the pressure, p, by the specific enthalpy

h =
γ

γ − 1
KΣγ−1

d , (19)

we find
−∂Φ
∂R
− 1

Σd

∂p

∂R
= −∂Φ

∂R
− γKΣγ−2

d

∂Σd

∂R
= − ∂

∂R
(Φ + h), (20)

with a similar expression for the φ Euler equation.

For a small spiral perturbation we can linearize these equations. Denoting the unperturbed solutions
by subscript “0” we have

v2
φ0

R
=

d
dR

(Φ0h0) =
dΦ0

dR
+ v2

s

d
dR

ln Σ0, (21)

which equates centripetal acceleration to the gravitational and pressure forces. For typical disks,
vs � vφ0 so we can ignore the pressure force leaving

vφ0 =

√
R

dΦ0

dR
= RΩ(R), (22)

as expected.

For the first order perturbation we can write vR = εvR1, vφ = vφ0 + εvφ1, h = h0 + εh1, Σd =
Σ0 + εΣd1, Φ = Φ0 + εΦ1, where ε � 1 and the subscript 1 quantities are the same order of
magnitude as the subscript 0 quantities. Then, to first order in ε:

∂vR1

∂t
+ Ω

∂vR1

∂phi
− 2Ωvφ1 = − ∂

∂R
(Φ1 + h1),

∂vφ1

∂t
+
[

d(ΩR)
dR

+ Ω
]
vR1 + Ω

∂vφ1

∂φ
= −1overR

∂

∂φ
(Φ1 + h1). (23)

The square bracket we can write as −2B(R) where

B(R) = −
(

Ω +
1
2
R

dΩ
dR

)
= − κ

2

4Ω
. (24)

Since these are linear equations any solution must be the sum of terms of the form

vR1 = vRa(R)ei(mφ−ωt)

vφ1 = vφa(R)ei(mφ−ωt)

Φ1 = Φa(R)ei(mφ−ωt)

h1 = ha(R)ei(mφ−ωt)

Σd1 = Σda(R)ei(mφ−ωt) (25)

where m ≥ 0 is an integer and the resulting perturbation has m-fold symmetry. (Note again that
we take only the real part of these solutions.) Using these forms we can solve for the velocities:

vRa(R) =
i

∆

[
(ω −mΩ)

d
dR

(Φa + ha)−
2mΩ
R

(Φa + ha)
]

vφa(R) = − 1
∆

[
2B

d
dR

(Φa + ha)−
m(ω −mΩ)

R
(Φa + ha)

]
, (26)
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where
∆ ≡ κ2 − (ω −mΩ)2, (27)

and κ, Ω, ∆, Φa and ha are all functions of radius. For ω real there may be radii where ∆ = 0
and the solution diverge. These correspond to (Lindblad) resonances and occur where a density
wave can be supported even for vanishingly small forcing function (the stuff in square brackets).
Our solution breaks down here (it can’t be treated as a perturbation) and a more sophisticated
approach is needed.

The linearized equation of state is

ha = γKΣγ−2
0 Σda = v2

s Σda/Σ0, (28)

and the perturbde surface density can be found from the perturbed velocities using the continuity
equation in cylindrical coordinates

∂Σd1

∂t
+ Ω

∂Σd1

∂φ
+

1
R

∂

∂R
(RvR1Σ0) +

Σ0

R

∂vφ1

∂φ
= 0, (29)

giving

−i(ω −mΩ)Σda +
1
R

d
dR

(RvRaΣ0)
imΣ0

R
vφa = 0. (30)

This gives us four equations for five variables (the fifth being Φa) and so determine the linear
response of the system to an imposed potential perturbation Φa. If the potential perturbation
is caused by the density perturbation then we can use Poisson’s equation to close this system of
equations. In general, this requires a numerical solution.

For a simpler approach we can use the WKB approximation for local perturbations in which we
assume that the d(Φa + ha)/dR terms are much larger (by a factor of kR) than the (Φa + ha)/R
terms (i.e. the oscillations are in the short-wavelength regime). Thus

vRa = −(ω −mΩ)
∆

k(Φa + ha)

vφa = −2iB
∆

k(Φa + ha), (31)

and a similar approximation for Σda. The simplified continuity equation is then

−(ω −mΩ)Σda + kΣ0vRa = 0. (32)

Eliminating vRa, ha and Φa from this leaves us with

Σda(R) =
∼
Pm (k,R, ω)Σa(R), (33)

where
∼
Pm (k,R, ω) =

2πGΣ0|k|
κ2 − (ω −mΩ)2 + v2

s k
2
, (34)

is the polarization function for tightly wound density waves. Σda here is the density response of
the disk to an imposed potential cause by a density perturbation Σa. For a self-consistent response
∼
Pm (k,R, ω) = 1 which implies

(ω −mΩ)2 = κ2 − 2πGΣ0|k|+ v2
s k

2, (35)

which is the dispersion relation for the density waves.
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2.3 Local Stability of Disks

The preceeding analysis allows us to ask about the stability of a disk to axisymmetric perturbations.
Consider a cold disk, vs = 0, then

ω2 = κ2 − 2πGΣ|k|. (36)

The right hand side is real, so omega2 must be real. If ω2 > 0 then ω is real and the disk is stable
(perturbations oscillate) but if ω2 < 0 then ω is imaginary and the disk is unstable (perturbations
grow exponentially). There is a critical wavenumber

kcrit ≡
κ2

2πGΣ
, (37)

which delineates these regimes. The instability is violent: as the wavenumber becomes large (wave-
length shrinks to zero) the growth rate ω grows without limit so a cold disk disintegrates on small
scales in arbitrarily short time.

With a non-zero sound speed we can again have instability if ω2 < 0. The dispersion relation is
now quadratic. It’s easy to show that if

Q ≡ vsκ

πGΣ
> 1, (38)

then the disk is stable for all wavenumbers. If Q < 1 the disk is unstable for some range of
wavenumbers. For a stellar disk the equivalent criterion is

Q ≡ σRκ

3.36GΣ
> 1. (39)

This Q is known as Toomre’s stability parameter. It shows that “hot” disks (those with high velocity
dispersion) are resistant to instability. In our local region of the Milky Way Q? ≈ 2.7 and Qg ≈ 1.5
so the disk is stable (really we should treat the stars and gas as a gravitationally coupled system).
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