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Material in this class is taken mostly from Binney & Merrifield §8.2, §9.1, §9.2 & §9.5.

1 The Interstellar Medium of Disk Galaxies

1.1 Radial Density Profiles

We can get a good overall picture of the structure of the ISM in galactic disks by looking at Fig. 1.
The left-panel shows the radial distribution of atomic and molecular hydrogen compared with the
distribution of starlight. A few points are immediately obvious:

• The molecular hydrogen is significantly more centrally concentrated than the atomic hydro-
gen;

• Their is a depression in the density of atomic hydrogen in the central regions;

• The ISM is significantly more radially extended than the starlight.

The right-panel shows molecular and atomic hydrogen radial profiles for other galaxies—these show
central depressions in both atomic and molecular gas (characteristic of early-type disk galaxies, such
as Andromeda).

The large radial extent of HI disks is very useful for probing rotation curves (and therefore dark
matter halos) out to large radii. The HI disks of galaxies cut off quite sharply at a surface density
of about 1024m−2. The reason for this was predicted by Sunyaev in 1969: the cosmic background
of ionizing photons is always trying to ionize HI gas, at higher surface densities the HI gas is able
to self-shield (the outer layers become ionized thereby absorbing all of the ionizing photons and
allowing the inner HI to remain neutral). Below 1024m−2 the HI is unable to self-shield and becomes
ionized by the cosmic background radiation. If this explanation is correct, we would expect the HI
disks to be enveloped in HII which should radiate in the Hα line. This HII envelope should also
extend to larger radii. This is in fact seen in the Milky Way.
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Figure 1: The radial distribution of B-band light (heavy line), H2 (dashed line) and HI (dotted
line) for NGC 6946.

1.2 Azimuthal Density Profiles

1.2.1 Bars and Oval Distortions

The gas (mostly H2) near the center of a disk often shows a bar structure (even if no bar is visible
in the stellar light). When an optical bar is present, the H2 bar is aligned with the optical one.

The outer disks might be slightly elliptical rather than circular. This hypothesis has to be tested
using velocity fields (since an intrinsically elliptical disk is difficult to distinguish from a circular
one seen slightly inclined).

1.2.2 Spiral Structure

Spiral structure is readily apparent in the gas content of disks. Figure 2 shows the distribution
of CO compared to red light and 21-cm emission in M51 (which shows a very clear, two-armed
spiral pattern due to a tidal interaction with a nearby neighbor). The CO distribution peaks on
the concave side of the arms. As we learned, the gas is flowing into the arms from the concave side,
the the peak in the gas density is just upstream of the arm’s crest in the mass distribution. The HI
(and Hα) emission peaks slightly downstream from that of the CO and is consistent with arising
from molecular gas being heated and dissociated by radiation from hot young stars produced by
the dense molecular gas. The HI distribution also shows evidence that the HI is not smoothly
arranged, but is instead broken up into blobs containing around 5 × 106M� with diameters of a
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Figure 2: The correlation of CO and HI emission with spiral arms in M51. Contours show CO
emission while the grey-scale shows red-continuum light (left) and 21-cm emission (right).

few hundred parsecs.

1.2.3 Lop-sidedness and Warps

Gas beyond the optical radius of galaxies often appears to be lop-sided (see Fig. 3), which would
not be expected is the gas disk were axisymmetric and planar. Interestingly, the isodensity contours
of the gas are approximately circular at all radii, but are not concentric with the galaxy’s nucleus
at large radii. However, velocity mapping shows that the gas is on circular orbits around the
nucleus even at large radii. The lop-sidedness must arise from the orbits being non-uniformly
populated at large radii. What’s strange about this is that differential rotation should smear out
any such arrangement with a few rotation periods (recall the winding problem argument). Since
many galaxies show this phenomenon it suggests that recent additions of gas to the outer regions
of galaxies is not uncommon, although the definitive answer to this puzzle remains elusive.

An additional common distortion, seen in edge-on galaxies, is a warp, in which the outer regions of
the disk deviate from the plan define by the inner regions. Such a warp corresponds to one of the
primary modes of a self-gravitating disk and as such is easily excited by, for example, an interaction
with a nearby galaxy.

1.3 Velocity Fields

By observing the frequency of a line (e.g. 21-cm line) of ISM gas we can (via the Doppler effect)
infer the velocity of the material in a galaxy disk at any given point. In general, if r is a vector
from the galactic nucleus to some point in the disk, n̂ is a unit vector normal to the annulus of the
disk of radius r and Ω(r) is the angular velocity of that annulus then the velocity of material at r
must be v = Ω(r)n̂× r with a line-of-sight component

vlos = R̂ · v = Ω(r)r · (R̂× n̂), (1)

where R̂ is the unit vector from the observer to the galaxy. The velocity field of a galaxy can be
modelled by varying Ω(r) and the polar angles (θ, φ) of n̂ until the values of vlos predicted by the
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Figure 3: An example of a lop-sided galaxy (left) and a warped galaxy (right).

above match those measured.

In the simple case of a flat disk the vector n̂ is constant and the line of sight velocity reduces to

vlos = Ω(r) sin ir · k̂, (2)

where i is the galaxy’s inclination and

k̂ ≡ R̂× n̂/ sin i, (3)

is the unit vector perpendicular to both R̂ and n̂ and runs parallel to the galaxy’s apparent major
axis. Knowing i (which can be inferred from the apparent ellipticity of the disk if we assume it’s
actually circular) we can infer the rotation speed vc(r) = Ω(r)r from the line of sight measurements.

Typical circular speed curves (a.k.a. rotation curves) are shown in Fig. 4. These are very important
because they can be used to infer the enclosed mass M(r)1. The shapes of rotation curves differ
significantly from one galaxy to the next but often show an inner region of solid-body rotation
(i.e. vc ∝ r) followed by an extended region of constant vc. The only clear correlation between
the rotation curve and galaxy properties is that more luminous galaxies show higher peak rotation
speeds (as quantified by the Tully-Fisher relation).

One could try to predict the rotation curve of a galaxy by using the measured light distribution
and a mass-to-light ratio, Υ, to convert this into a mass distribution. Sometimes this gives a good

1We often do this by assuming that the mass interior to radius r is spherically distributed such that M(r) = v2
cr/G.

Treating the disk as a razor thin plane gives a slightly different answer (of order 10–20% different).
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Figure 4: Rotation curves of two galaxies. Measured rotation speeds are shown by crosses. The
dashed and dot-dashed lines show the expected rotation speeds from disk and bulge components
after assigning appropriate mass-to-light ratios to them. The solid lines shows the net rotation due
to the combination of disk and bulge.

match to the measured vc(r) but often it does not (see Fig. 4). The problem is that many rotation
curves remain flat to large radii but, at sufficiently large radius, the rotation speed due to a galaxy
must always decline as r−1/2 (i.e. the galaxy acts as a point mass so we get Keplerian rotation).
Even though we often don’t know Υ all that well, in many cases there is no vaue of Υ which would
result in a good fit to the entire rotation curve.

The interpretation of this is that there is some unobserved matter at large radii which contributes
to the rotation. These measurements don’t tell us what it is—it could in principle be very faint
stars or brown dwarfs, black holes, rocks etc.—but from other reasoning we believe that it is dark
matter.

1.4 Metallicities

The metallicity of ISM as can be inferred from the strengths of emission lines in the spectra of HII
regions (which are just regions of highly ionized gas around young, hot stars). For our purposes,
the metallicity is interesting in so far as it can tell us about the structure and formation of the
galaxy.

One interesting observational fact is that the mean metallicity of the ISM is correlated strongly
with the peak rotation speed of the disk—higher vc implies higher metallicity. From our simple
models of chemical evolution we know that the effective yield (which determines the metallicity
of the gas) depends on the degree of mass outflow experienced by the galaxy. If lower vc galaxies
experience stronger outflows (which may be expected since the gravitational potential well depth is
proportional to v2

c ) then they shoudl have lower effective yields and so lower metallicities. Recalling
the definition peff = −Z/ ln fgas observations show that peff varies within a galaxy (ruling out the
closed-box model) as well as from galaxy to galaxy: a dwarf galaxy may have peff ≈ 0.005 while
the inner regions of a luminous disk may have peff ≈ 0.012.
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1.5 Magnetic Fields

The direction of the magnetic field in galaxy disks can be inferred from polarization measurements
(in optical light, scattering from dust grains which tend to align with the magnetic field results in
the electric vector of the radiation being aligned with B while at radio wavelengths synchrotron
emission is polarized perpendicular to B). Measurements show that the magnetic field tends to
point along spiral arms and, in the Milky Way, that it lies in the plane of the disk.

The magnitude of the magnetic field can be inferred from measurements of the intensity of syn-
chrotron emission jsync ∝ εB2 (where ε is the energy density of the electrons causing the synchrotron
emission) and the assumption that the magnetic energy density, B2/2µ0, is comparable to that of
the cosmic ray energy density (i.e. equipartition). This allows B to be solved for and typical values
of order a nT (10−5 Gauss) are found.

1.6 Star Formation

Observations of Hα emission from galaxy disks trace the presence of young, hot stars. (These stars
emit copious numbers of ionizing photons, creating HII regions around them. Recombinations in
those HII regions then emit Hα photons. In equilibrium then, the rate of Hα emission is proportional
to the rate of ionizing photon production and therefore to the number of young stars.) Since these
stars are short lived, their number provides a measure of the star formation rate over the past
∼ 10Myr.

Stars probably form through the gravitational instability of the ISM. We might therefore expect
that the star formation rate should depend on the surface density of gas (which is what determines
that stability). In fact, observationally

I(Hα) ∝ Σ1.3
gas, (4)

in regions where the gas surface density is sufficiently high. Interestingly, the Hα intensity rapidly
falls below this value when the gas density reaches about 0.63 times the critical density of

Σcrit ≡
κvs

πG
, (5)

where κ is the epicyclic frequency and vs ≈ 6km/s is the sound speed. As we’ve seen, a gas
disk is unstable to axisymmetric disturbances only if its surface density exceeds this value. So,
observations suggest that instability is required for star formation. (The reason that star formation
shuts off at 0.63 times the critical density instead precisely at the critical density is probably due
to the fact that the disk is not purely gaseous—there’s a stellar component—and that there are
observational uncertainties in the determination of Σcrit.)

While the gas density rises above 0.63Σcrit in the star forming regions of the disk, it never exceeds
it by a huge amount. This suggests that once the disk becomes unstable, star formtion rapidly
depletes it of gas driving the density back down towards Σcrit.
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Figure 5: Longitude-velocity plot of the intensity of 21-cm radiation from the Milky Way.

2 Differential Rotation

When trying to map out the stucture of the Milky Way’s disk through observations of the ISM
the quantity that we can easily obtain is the amount of material (e.g. HI) at each velocity along
a particular line of sight. (For example, when observing a line the line is shifted in frequency due
to the velocity of the material while its intensity indicates the amount of material present.) For a
disk it is useful to average this quantity around a small range of galactic latitudes b close to b = 0
(i.e. around the mid-plane). The result is a longitude-velocity plot showing the amount of material
at each longitude and velocity (see Fig. 5). To simplify matters we’ll imagine that the Sun were
actually moving with the Local Standard of Rest (it’s easy enough to convert these diagrams to
the LSR once the Sun’s motion relative to it is known).

We can consider what the (l, v) plot would look like for a disk with purely circular rotation. The
vector velocity of material at position R from the galactic center is vc = Ω(R) ×R, where Ω(R)
is the (vector) angular velocity. The LSR moves with velocity v0 = Ω(R0) ×R0 where R0 is the
position of the Sun. The line-of-sight velocity seen by an observer in the LSR is then vc − v0

projected onto the vector (R−R0):

vlos =
R−R0

|R−R0|
· [Ω(R)×R−Ω(R0)×R0]. (6)

We can simplify this with some vector algebra to give

vlos =
[Ω(R)−Ω(R0)] · (R0 ×R)

|R−R0|
. (7)

From Fig. 6 we see that R0 ×R = −R0R sinαn̂ where n̂ is a unit vector normal to the disk and
sinα/|R−R0| = sin l/R. Also, Ω = −|Ω|n̂ (the negative here just arises from the sense of rotation
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Figure 6: Geometry of a disk of material in circular rotation.

Figure 7: Traces in the (l, v) plane for three rings of radii r = 0.9R0 (solid), r = 0.1R0 (dotted)
and r = 1.5R0 (dashed) normalized to unit circular speed at all R.

of the Milky Way). Putting this all together we find

vlos(l) = [Ω(R)− Ω(R0)]R0 sin l. (8)

If we considered just a single ring of matter then the above equation shows that along any line of
sight we intersect it at just one unique velocity and that velocity is proportional to sin l. In the
(l, v) plot the trace of such a ring therefore always looks like a sine wave (Fig. 7). For r < R0 there
is a limited range of l that actually intersects the ring (l = ± arcsin(R/R0)) so we see only part of
the curve. For r > R0 all directions intersect the ring, so we see the full sine wave. The slope at
the origin is proportional to Ω(R) − Ω(R0). For any reasonable mass distibution Ω(R) increases
inwards so the slope is largest for the smallest rings and flips signs across R = R0. For R→∞ the
amplitude of the curve tends to Ω(R0)R0.

We can think of the Milky Way’s disk as being made up from an infinite number of such rings
which will therefore populate large regions of the (l, v) plane, but not all regions. From our simple
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model, material at l > 0 must have velocities less than −R0Ω(R0) sin l so anything beyond this is
said to be a forbidden velocity.

Along any given line of sight (i.e. fixed l) the largest velocity observed must correspond to the
smallest ring intersected (which has the largest Ω(R)). The line of sight must therefore be tangent
to this ring (otherwise it would intersect yet smaller rings). Clearly the radius of this ring is just
rt = R0 sin l and it’s easy to show that its circular velocity must be

vc(rt) = v
(t)
los(l) + vc(R0) sin l. (9)

Since v(t)
los(l) is an observable quantity we can use this to determine the rotation curve if we can

find some way to measure vc(R0). In principle vc(R0) is just the amplitude of the boundary of the
occupied region of the (l, v) plane for large R. In practice though, its difficult to measure, as we’ll
see later.

Once we’ve determined the rotation curve vc(R) (and, therefore, Ω(R)) we can use the measured
line of sight velocity to any object to infer its distance from the Sun. For rings outside the Solar
circle there any line of sight intersects the ring only once, allowing for a unique distance to be
determined2. Inside the Solar circle a line of sight will intersect a ring either twice or not at all.
This means that there are two possible solutions for the distance to any given object.

2.1 Spiral Structure

Non-circular motions in the gas will complicate the (l, v) plot. From our study of spiral structure,
we know that spiral arms arise when particles move on elliptical orbits with the major axes of those
ellipses rotating smoothly as a function of radius as in the left panel of Fig. 8.

This has two effects on the (l, v) plot. Firstly, the density enhancement in the arms causes increased
emission at the corresponding point in the (l, v) plot. The right panel of Fig. 8 shows how the points
along a spiral arm trace out in the (l, v) plane—the spiral pattern leads to enhanced emission along
curves which fan out from the origin. The spiral pattern also affects velocities (since particles are
no longer moving on circular orbits) leading each ring of material to form a loop in the (l, v) plane
around the circular orbit sine wave. Spiral arms can thus be found by using the (l, v) plane to map
regions of enhanced emission into real space coordinates. In principle, to map the (l, v) plane of a
spiral pattern back into real space we need to model the arms kinematics (to allow us to convert
observed velocities to diatances). Somemwhat fortuitously, modelling the kinematics using circular
orbits tends to actually enhance the spiral pattern obtainde in real space making it relatively easy
to detect the spiral features!

2However, there is a finite range of velocity corresponding to an infinite range in radius outside of the Solar circle.
Even small errors in velocity can therefore lead to large errors in distance.
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Figure 8: Geometry of a disk of material in circular rotation.

3 The Nucleus

The Galactic nucleus remains one of the most poorly undertsood regions of the Galaxy, mostly
because it’s i) small, ii) highly obscured and iii) has a lot going on. Recent work is beginning to
really constrain the nature of whatever is at the very center though. This is good because active
galactic nuclei (accreting supermassive black holes) produce far more energy than all of the stars
produced in galaxies and recent work suggests that this energy is actually crucial in shaping the
formation and evolution of galaxies. Our own galactic nucleus is not at all active though—it’s
actually very quiet (surprisingly quiet!). A brief inventory of the contents of the Galatic center
looks like this:

Sgr A* This is bright point of non-thermal radio emission which seems to be the dynamical center
of the Galaxy.

Mini-spiral This is a spiral-shaped region of Bremsstrahlung emission from ionized gas near Sgr
A* and extends over about 8pc. The source of the ionization is known as. . .

Sgr A West to distinguish it from the more extensive region of non-thermal emission known as. . .

Sgr A East which most likely arises from a shell of shocked gas being driven out into the ISM by
SNe explosions, stellar winds or some other process.

Nuclear molecular ring Observations of molecular lines of HCN show a ring of molecular gas
that extends to about 7pc from Sgr A*. The ring clearly doesn’t lie in the plane of the Milky
Way as we see it clearly as a ring. It has been modeled as being in circular rotation at a
velocity of 100km/s inclined at 65◦.
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The ionization within this nuclear ring comes from an unusual cluster of stars whose center lies
within 0.04pc of Sgr A* and has a half-mass radius of about 0.5pc. This cluster seems to contain
many young, hot stars suggesting a period of star formation only 107yr ago. (Alternatively, these
could be older stars which have been significantly modified by mass exhange during collisions with
other stars.)

Sgr A* itself is a non-thermal radio source with a size less than 2.5AU. Most likely it is a supermas-
sive black hole. Recently, two groups (led by Reinhard Genzel and Andrea Ghez) have measured
the orbits of stars which pass very close to Sgr A*. These orbits constrain the mass of the object
to be about 2–3×106M�. Of course, the Schwarchild radius of a black hole of this mass would be
only 2 × 10−7pc, much smaller than the radii of the orbits which have been measured (which go
down to ∼ 0.01pc). So, this could in principle be an extended mass distribution and not a black
hole.

However, we can actually constrain the mass of Sgr A* dynamically. Due to the high stellar density
around Sgr A* relaxation times should be short and Sgr A* and the surrounding star cluster should
be in equilibrium and therefore have reached equipartition of energy. Therefore, the velocity of Sgr
A* should be drawn from a Maxwellian distribution with dispersion equal to σcl

√
M∗/MA∗ where

σcl is the velocity dispersion of the star cluster, M∗ the mean mass of a star in that cluster and
MA∗ the mass of Sgr A*. While we can’t measure the radial velocity of Sgr A* (no lines in its
spectrum) its proper motion can be measured and is v⊥ = −11.6± 8.9km/s, i.e. vanishingly small.
This suggests a mass of at least 104M� (since σcl = 1150km/s.
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