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Material in this class is taken mostly from Binney & Merrifield §10.3–10.6.

1 Kinematics in the Solar Neighborhood

Having developed lots of theory of galactic dynamics and structure one of the most obvious things
to do is to apply it to the Milky Way and see if it is able to explain observational facts.

1.1 Local Standard of Rest

Throughout this class we’ve often made use of the Local Standard of Rest, but we’ve never discussed
how it might be determined. We will show below that by measuring the mean motion of different
types of stars relative to the Sun (known as the Solar motion) we can infer the velocity of the LSR
relative to the Sun. We can infer the Solar motion from measurements of either radial velocities
or proper motions of stars. Suppose that a star of some type has velocity v in the frame in which
that type of stars is at rest on average. Let v� be the velocity of the Sun in that frame (the Solar
motion). The line of sight velocity of the kth star is just

vlosk = x̂ · vk − v� cosψk, (1)

where x̂k is a unit vector from the Sun to the star and ψk is the angle between v� and x̂k. Suppose
we average this line of sight velocity over a large number of stars all seen in approximately the
same direction. Then 〈x̂ · vk〉 ≈ x̂ · 〈vk〉 ≈ 0 since the mean velocity of the stars must be zero in
their rest frame. Therefore

〈vlos〉 ≈ −v� cosψ. (2)

Measuring 〈vlos〉 as a function of position therefore allows us to infer v�.

Similarly, suppose we average the proper motions of stars which all lie in approximately the same
direction x̂ and approximately at the same distance d:

〈µ〉 =
〈

((vk − v�)× x̂k)× x̂k
|xk|

〉

1



Figure 1: The V-component of Solar motion relative to different stellar types as a function of the
random velocity S2 of each type.

≈ ((vk − v�)× x̂)× x̂
d

= −1
d

(v� × x̂)× x̂

=
1
d

(v� − v� cosφx̂). (3)

The direction of the Solar motion is easily found by looking for where 〈µ〉 = 0 but the magnitude,
v�, requires an estimate of the distance to the stars.

If we measure v� in this way for many different types of star we find a strong correlation between
V (azimuthal) component and the mean squared random velocity, S2, of those stars as shown in
Fig. 1. This is exactly what we’d expect from our previous study of asymmetric drift—classes of
star with greater random velocities rotate more slowly around galactic center (they essentially have
a degree of pressure support so don’t have to rotate as fast to stay in orbit). The LSR is defined as
the mean motion of a population with zero random velocities. We can therefore infer V� relative to
such a hypothetical population by extrapolating the relation to S2 = 0. The result of this is that
the Sun moves relative to the LSR at a velocity:

U� = 10.0 ± 0.4km s−1

V� = 5.2 ± 0.6km s−1

W� = 7.2 ± 0.4km s−1

⇒ |v�| = 13.4km s−1. (4)

1.2 Vertex Deviation

We previously considered the possibility that the velocity ellipsoid in the galaxy may not be aligned
with the principal axes of the coordinate system. If we locally define a Cartesian coordinate system
with x pointing towards Galactic center, y in the direction of rotation of the disk and z normal
to the plane of the disk then we can test for any such vertex deviation by considering correlations
such as 〈vx(vy − 〈vy〉〉. (It turns out that correlations involving vz are zero.) It turns out that
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Figure 2: Orientation of the velocity ellipsoid. Galactic center is towards the top of the page. The
Sun lies at the center of the ellipse and moves towards the left.

the average 〈vx(vy − 〈vy〉〉 is non-zero for many stellar types. It’s therefore useful to find linear
combinations of vx and (vy − 〈vy〉 that are statistically independent (i.e. uncorrelated):

v1 ≡ vx cos lv − (vy − 〈vy〉) sin lv
v2 ≡ vx sin lv − (vy − 〈vy〉) cos lv (5)

where the angle lv is the vertex deviation. Taking the average of the product of these quantities
gives

〈v1v2〉 =
1
2

(σ2
x − σ2

y) sin 2lv + 〈vx(vy〈vy〉)〉 cos 2lv, (6)

which will be statistically independent (i.e. 〈v1v2〉 = 0) if

lv =
1
2

arctan

(
2〈vx(vy〈vy〉)〉
σ2
x − σ2

y

)
. (7)

The linear transformation to v1 and v2 is just a rotation of coordinates. The angle lv therefore
measures the angle between the axes of our coordinate system and the principal axes of the velocity
ellipsoid (see Fig. 2).

Observationally, vertex deviations of 10–30◦ are measured (the largest values being for bluest stars).
Why do we see vertex deviation? If the Galaxy was axisymmetric, in a steady state with stars
distributed randomly along their orbits then we’d expect no vertex deviation purely from the
symmetry of the system. That we see lv differ from zero therefore implies that at least one of these
conditions does not hold. One contribution to vertex deviation comes from moving groups—groups
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of stars which share a common motion (due to a common origin). This significantly reduces the
number of independent velocities in any determination of velocity correlations and leads to enhanced
noise in estimates of the vertex deviation. However, there may also be a more physical origin: the
Galaxy isn’t axisymmetric as it contains spiral structure. We saw that spiral density waves lead
to perturbations in the gravitational potential and, consequently, perturbations in the velocities of
stars. These non-axisymmetric perturbations to the velocity can lead to vertex deviation.

1.3 Oort’s Constants

We’ve so far assumed that the Local Standard of Rest is the same throughout the Solar neighbor-
hood. However, when determining the LSR from studies of stars we often have to use a neigh-
borhood that is sufficiently large that we might expect some variation in the SR throughout that
volume. We can quantify such effects and, as a bonus, will demonstrate that the motion of stars
in the disk is close to circular (rather than being elliptical) and constrain the rotation speed.

We begin by defining a Standard of Rest at every point x by analogy with our definition of the
LSR—it should correspond to the velocity of a star on a closed orbit passing through that point.
If the Milky Way disk were everywhere circular the SR would always equal the circular speed and
be perpendicular to the radius vector, but our definition is more general. We can consider the
variation in the SR around the Sun: δv(x) = v(x)− v(x�). Expanding this in a Taylor series we
can write the components of this vector as(

δvx
δvy

)
=

(
∂δvx
∂x

∂δvx
∂y

∂δvy

∂x
∂δvy

∂y

)(
x
y

)
+O(x2 + y2)

=

(
k + c a− b
a+ b k − c

)(
x
y

)
+O(x2 + y2), (8)

where the partial derivatives are evaluated at the origin and a, b, c and k are linear combinations
of those partial derivatives (we’ll see why we want to write them in this way later). The mean line
of sight velocity for stars at some position x = (x, y) is then

vlos =
1
d
x · δv

≈ 1
d

[(k + c)x2 + (k − c)y2 + 2axy], (9)

where d = (x2 + y2)1/2 is the heliocentric distance. In terms of Galactic longitude, x = d cos l and
y = d sin l so

vlos = d(k + c cos 2l + a sin 2l) +O(d2). (10)

If we can select a set of stars all at similar distances (e.g. of the same spectral type and apparent
magnitude) then by measuring the line of sight velocity as a function of l we could infer a, c and
k. Similarly, the constant b can be determined from proper motions since the tangential velocity is

δvt =
1
d

(x× δv)z =
1
d

(xδvy − yδvx)

= d(b+ a cos 2l − c sin 2l) +O(d2). (11)
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The above makes no assumptions about the form of vSR, only that is varies smoothly. If we assume
circular motion with angular frequency Ω(R) then the results simplify. Expanding our previous
exact expression for vlos under circular motion and keeping only the first order terms gives

vlos(l, R) ≈ dΩ
dR

∣∣∣∣
R0

(R−R0)R0 sin l

= −2A(R−R0)
R0

R
sin l, (12)

where Oort’s constant A is defined by

A ≡ −1
2

(
R

dΩ
dR

)
R0

=
1
2

(
vc
R
− dvc

dR

)
R0

. (13)

In the Solar neighborhood, d� R so

(R−R0)(R+R0) = R2 −R2
0 ≈ −2R0d cos l, (14)

and since R+R0 ≈ 2d this gives
(R−R0) = −d cos l. (15)

Combining these results
vlos ≈ Ad sin 2l. (16)

Evidently in this special case of circular motion a = A, c = k = 0. For the tangential velocities
under circular motion we similarly find

vt =
(

R−R0

|R−R0|
× [Ω(R)×R−Ω(R0)×R0]

)
z

=
(

R−R0

d
× {Ω(R)× (R−R0) + [Ω(R)−Ω(R0)]×R0}

)
z

≈ Ωz(R)d+
dΩz

dR

∣∣∣∣
R0

(R−R0) ·R0

d
. (17)

Using the fact that (R−R0) ·R0 = −dR0 cos l this simplifies to

vt ≈ Ωz(R0)d+ dR0
dΩz

dR

∣∣∣∣
R0

cos2 l

= d

(
Ωz(R0) +

1
2
R0

dΩz

dR

∣∣∣∣
R0

(1 + cos 2l)

)
. (18)

Since the Milky Way rotates clockwise Ωz = −Ω and so we defined Oort’s constant B by

B ≡ −
(

Ω +
1
2
R

dΩz

dR

)
R0

= −1
2

(
vc
R

+
dvc
dR

)
R0

. (19)

Our earlier expression for proper motion can then be written

µl =
vt
d

= B +A cos 2l, (20)
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which implies that b = B for circular motion. A measures the shear in the motion near the Sun—it
would be zero if the material were rotating as a solid body. B measures the vorticity of the motion,
the tendency for the stars to circulate around a given point. From the above definitions:

vc = R0(A−B) and
dvc
dR

∣∣∣∣
R0

= −(A+B). (21)

Observationally it is found that

c = 0.6± 1.1km s−1 kpc−1, k = −0.35± 0.5km s−1 kpc−1, (22)

which are both consistent with zero. We therefore set them to zero and associate a = A and b = B.

A can be determined from studies of radial velocities or proper motions while B can only be
determined from proper motion studies. Such studies find

A = 14.82± 0.84km s−1 kpc−1, B = −12.37± 0.64km s−1 kpc−1. (23)

2 Structure of the Stellar Disk

2.1 The Thick Disk

Determination of the variation of the density of a given type of star with distance above the Galactic
plane is most easily done via star counts towards the Galactic poles. The number of stars per unit
area is counted as a function of their apparent magnitude and their distance (usually determined
photometrically from their colors or from parallaxes where available). The relative number density
of stars of given absolute magnitude can then be derived as a function of distance from the plane,
z.

Observationally, it is found that brighter stars show a more rapid decline in density with z, i.e. they
are more confined to the plane than fainter stars. These stars also have lower velocity dispersions
than fainter stars (as expected: lower velocity dispersion means that the bright stars don’t have
the kinetic energy required to rise vary far above the plane and so we should expect them to be
confined close to z = 0). These facts suggests that stars are born close to the plane, with low
velocity dispersion and are gradually “heated”, gaining velocity dispersion and rising further above
the plane. Bright stars with short lifetimes don’t live long enough to be heated significantly and
so are only ever seen close to the plane. (This is one explanation of the observed facts, there are
others which involve the fainter, older stars being born with a broader distribution in z rather than
being heated into this distribution.)

The derived vertical density profile for 4 < MV < 5 main sequence stars is shown in Fig. 3. The
density profile clearly differs from a single exponential ν ∝ exp(−z/z0) (which would be a straight
line in this plot). However, it is well fit by the sum of two exponentials with different scale-heights
z0.

We could interpret this in two different ways: 1) The disk is made up of two components, a thin and
thick disk, each with exponential profiles or, 2) since we have no a priori reason to expect that disks
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Figure 3: Space density of MS stars above the plane of the disk. Solid lines are exponentials with
scale heights of 300pc and 1350pc. The dashed curve shows the sum of these two exponentials.

just have exponential profiles, maybe there is just a single disk which happens to have this particular
profile. It’s impossible to say anything more about this from the density profile alone. The first
possibility would only be physically meaningful if there were some other discernable difference
between stars in the two components. In fact, it is found that stars in the thick component (i.e.
those at large z) are significantly older and less metal enriched than stars in the thin disk. This
suggests that there is a real, physical difference between the thin and thick components, perhaps
suggesting different formation mechanisms or, at least, different dynamical histories (e.g. perhaps
the thick disk was originally thin, but formed before some significant heating event which thickened
it significantly).

2.2 Local Mass Density of the Disk

A key quantity in any understanding of the structure of our Galaxy is the density of the local disk.
The only real way to measure the mass of anything astronomically is to measure the strength of
its gravitational field, F, and then infer the density through Poisson’s equation:

∇ · F = −4πGρ. (24)

Assuming the Galaxy to be axisymmetric the logical coordinate system to use is a cylindrical
coordinate system in which this equation reads

1
R

∂

∂R
(RFR) +

∂Fz
∂z

= −4πGρ. (25)
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The circular speed obeys v2
c/R = −FR and so

ρ = − 1
4πG

(
∂Fz
∂z
− 1
R

∂v2
c

∂R

)
. (26)

Since the circular speed is approximately constant with R the second term on the right is small
compared to the first. Additionally, mass models of the Galaxy (which we’ll dicuss soon) suggest
that this term depends only weakly on z for z � R. Therefore, we approximate it as constant and
integrate the density over the z direction to get the surface density within some height z above the
plane:

Σ(R, z) ≡ 2
∫ z

0
dz′ρ(R, z′) ≈ − 1

2πG

(
Fz(R, z)−

z

R

∂v2
c

∂R

)
, (27)

where we’ve assumed Fz(R, 0) = 0 as appropriate for a disk symmetric about the plane z = 0.
Close to the plane we expect the thin disk to dominate the mass density, so, crudely, we could take
Σ(R, 3z0) to be the mass density of the disk. (A more careful analysis would attempt to subtract
off any contibution from other mass components.)

We therefore need to determine Fz(R, z). The basic idea behind how we do this goes as follows:
Consider some population of stars lying at a distance z from the plane and with a z velocity
dispersion of σz. We then identify the same population at z + δz and find that the density of such
stars is lowe than at z. The argument is that the decline in density is due to the fact that the slower
stars at z don’t have enough energy to climb up the gravitational potential to z+δz. Therefore, the
greater Fz(R, z) the steeper the potential gradient and the fewer stars will get to z + δz leading to
a more rapid decline in density with z. Classic studies of this type made use of the Jeans equation
to express this mathematically:

νFz =
∂νσ2

z

∂z
+

1
R

∂

∂R
(Rνσ2

Rz), (28)

where σ2
Rz is the average over the population of the product vRvz. This term actually complicates

the analysis significantly as stars can have significant radial velocity dispersion—this cross term
arises due to a coupling between radial and vertical motions. Early studies simply neglected this
term, but it turns out that it’s not negligble and corrections for it must be included.

Current estimates suggest that the surface density within 1.1kpc of the plane is about

Σ1.1(R0) = 71± 6M�pc−2. (29)

Using mass models of the Galaxy to correct for non-disk contributions this number is reduced
somewhat to

Σd(R0) = 48± 9M�pc−2. (30)

3 Galaxy Models

Having developed some knowledge of the various structural components of the Milky Way and their
kinematics it is obviously useful to attempt to put together models which incorporate all of these
components and which attempt to match the observational constraints. There are several types of
such galaxy models which we’ll review briefly.
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3.1 Mass Models

On obvious approach to do is to specify the mass density distribution of each component of the
galaxy using simple, parametric forms, and then adjust the parameters of those forms to fit exper-
imental data (such as the rotation curve, velocity dispersions, disk surface density etc.). This is
a well-developed approach. Modern mass models include several components: stellar bulge, thin
and thick stellar disks (usually modelled as exponentials in radius and height), a gaseous ISM disk,
stellar halo and dark matter halo.

Perhaps not surprisingly, given this large number of components, there is often more than one
set of parameters which gives a good fit to the available data. In such situations, one can either
wait for better data to be obtained or can attempt to constrain the models further using theoretical
expectations. For example, relatively recent work by Klypin et al.1 impose theoretical expectations
for dark matter halo mass and shape and disk mass from the favored Λ-dominated cold dark matter
cosmological model to constrain mass models of the Milky Way and M31.

3.2 Star Count Models

A related type of model is the star count model which attempts to predict the number of stars
of magnitude M at each position x. It’s easy to see that such a model can be constructed by
assigning a (possibly position dependent) stellar luminosity function Φ(M,x) to each component
in a mass model. The star counts can then be found by summing the luminosity functions from
each component.

3.3 Kinematic Models

Since we can measure the velocity dispersions of stars as a function of position in the Milky Way
(from proper motions or radial velocities) it’s useful to be able to predict these quantities from
a model. A kinematic model does just that. Frequently, such models assume that the velocity
distribution at each point is given by a Schwarzchild distribution (essentially a triaxial Gaussian)
with some additional net streaming motion. These models require specification of the principal
axes of this ellipse (directions and magnitudes) at each point together with the streaming motion.
This makes them difficult to construct and, in any case, the Schwarzchild distribution is really just
an assumption so may not be valid.

3.4 Dynamical Models

As we’ve seen, dynamics connects the kinematics to the density distribution since stars at some
point x moving with some velocity v must at a later time find themselves at a new position x1.

1http://adsabs.harvard.edu/abs/2002ApJ...573..597K
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If the galaxy is in a steady state then the velocity distributions at these two points cannot be
independent.

In principle, Jeans equations describe this connection between structure and kinematics. One could
therefore use them to compute a kinematic model given a mass model. Unfortunately, the Jeans
equations don’t have tractable boundary conditions, so in practice this procedure does not work.
A more elaborate approach is to attempt to construct an N-body model which looks just like the
Galaxy. This would then predict the density and kinematics at all points. Unfortunately, the
very reason why we carry out N-body simulations (to solve the complicated non-linear dynamics
of gravitating systems) means that it’s not easy to guess a set of initial conditions which will relax
to form something which looks like the Milky Way.
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