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Throughout this class we’ve treated galaxies as equilibrium gravitating systems. While this is
often a reasonable approximation (since changes in their overall structure seem to mostly occur on
timescales long compared to their dynamical times) we know that this assumption cannot always
hold: there were no galaxies around just after the Big Bang and so they must have formed some
time between then and now—and that implies a non-equilibrium process.

Galaxies are made from baryonic material (mostly hydrogen and helium) but the mass density of
the universe is dominated by dark matter. As a result, the early stages of structure formation
in the Universe occur via the gravitational collapse of systems of dark matter. In Ay 127 you’ll
develop simple models for this gravitational collapse process. For our purposes, only a few key
points matter:

1. Regions of dark matter which are initially slightly overdense will become more overdense
due to their self-gravity. They will eventually collapse to form a near-equilibrium, approxi-
mately spherical distribution of dark matter supported against further collapse by the random
motions of the constituent dark matter particles. This process is known as “virialization”.

2. These “dark matter halos” are typically around 200 times denser than the mean density of
the Universe at the time of their formation.

3. In cold dark matter Universes, the first halos to form are small and low mass. These can be
later subsumed into larger halos. As we’ll see later, even though they’re subsumed they’re
not entirely destroyed—so halos may contain populations of orbitting subhalos.

4. The deep gravitational potential wells of dark matter halos form a natural place in which
galaxies may form.

The details of the galaxy formation process are still not all that well understood1. However, the
basics ideas involved are now reasonably well established and we’ll review the key concepts here.

1Due to the fact that the physics is non-linear, occurs over a very large range of mass and length scales and
involves lots of messy physics such a hydrodynamics, star formation, supernovae explosions, active galactic nuclei,
radiative transfer etc.
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1 Cooling of gas in halos

While matter is distributed diffusely the pressure of the baryonic component doesn’t significantly
affect its motions and so we can expect the baryonic material to follow along with the gravitationally
dominant dark matter. As a result, any dark matter halo sufficiently massive to overcome the
pressure forces will contain a mass of baryons approximately equal to a fraction Ωb/Ω0 of its total
mass.

Suppose that the mass of the halo is MV and that it has a radius of RV = (3MV/4πρ̄)1/3. Baryonic
material arriving at the edge of this halo will have a specific kinetic energy of

1
2
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GMv

Rv
− GMv

2Rv
, (1)

where we’ve assumed that the gas fell in from a radius of 2RV. (You’ll see why this radius makes
sense when you study spherical collapse models in Ay 127.) This velocity can greatly exceed the
sound speed in the gas and so we may expect a strong shock to occur at some point. This will
convert the kinetic enery of the gas into random, thermal motions, thereby heating the gas to a
temperature of around

kBT ≈
1
2
µmHv

2. (2)

We refer to this as the virial temperature and can express it as

TV =
1
2
µmH

kB

GMv

Rv
. (3)

For a halo such as that of the Milky Way (MV ∼ 1012M�, RV ≈ 300kpc) this temperature is of
order 106K. For a massive cluster o galaxies it can reach as high as 108K.

Once heated to this temperature, the pressure of the gas is sufficient to support itself against
the gravitational pull of the dark matter2 and so the gas will settle into a hydrostatic, pressure
supported atmosphere. This is where significant differences between the behavior of dark matter
and baryonic matter begin to appear. Unlike dark matter, the baryons can lose energy by radiating.
As they do this, they will begin to lose pressure support and so must eventually sucumb to the
gravitational pull of the dark matter and flow toward the center of the halo.

The gas has a thermal energy per unit volume of

E =
N

2
ntkBTv (4)

where N = 3 or 5 depending on whether you think that the cooling occurs at constant density or
pressure, and nt is the total number of particles (ions, atoms, electrons) per unit volume. We can
write the rate at which the gas is radiating energy per unit volume as

Ė = n2
HΛ(T,Z) (5)

where nH is the density of hydrogen and Λ(T,Z) is known as a the cooling function. Since the
radative processes at work (at least in the regimes applicable to most forming galaxies) are two-
body interactions, we can factor out the density dependence in this way, leaving Λ(T,Z) a function

2You can convince yourself of this quite easily using order of magnitude estimates.
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of only temperature and metallicity. To compute Λ(T,Z) the ionization states of the various
elements are computed assuming that they are at their equilibrium ratios for gas in collisional
ionization equilibrium (i.e. that ionizations due to collisions with free electrons are balanced by the
rate of recombination). Then the rates of cooling due to various atomic processes (recombination,
collisional excitation, Bremsstrahlung etc.) are summed. An example of the resulting cooling
function is shown in Fig. 1.

A characteristic timescale for cooling can then be estimated as:

tcool =
E
Ė

=
N

2
nt

nH

kBTv

nHΛ(T,Z)
∝ 1/ρ. (6)

As indicated above, this is inversely proportional to density. We expect the inner regions of the
gaseous atmosphere in a halo to be denser than the outer regions. A simple model for the radial
density variation is

ρ(r) ∝ r−2. (7)

In such a model, we find
tcool ∝ r2. (8)

If the atmosphere has been cooling for a time t the radius at which t = tcool is therefore

rcool ∝ t1/2. (9)

As such, we expect the radius within which gas has had sufficient time to cool to grow as the halo
ages, allowing more and more mass to lose pressure support and flow to the center of the halo.
In practice, things are more complicated for several reasons: the atmosphere will respond to the
cooling of the inner regions; cooling may result in a multiphase atmosphere containing cool, dense
clouds; and some gas may escape being shocked altogether and therefore have no need to cool down
before it can flow to the center of the halo.

2 Angular momentum and sizes of disks

If the cooling gas in a dark matter halo cooled to zero temperature and has no angular momentum,
it would fall to zero radius. However, it turns out that the gas does have some angular momentum.
If this angular momentum is conserved during the post-cooling collapse then the gas must spin more
and more rapidly as it shrinks to smaller and smaller radii. Eventually, it must be spinning fast
enough to become rotationally supported against further collapse. At this point, we may expect
it to form a rotationally supported disk. This is good, since such disks are a major component of
galaxies.

Where does this angular momentum originate? During the gravitational collapse of a dark matter
halo the halo can experience gravitational torques due to the non-isotropic distribution of mass
surrounding it3. These torques transfer angular momentum to the collapsing halo, causing it to
spin up. Since the baryonic material is behaving more-or-less like collisionless dark matter at this
point it will gain angular momentum and spin up also.

3The distribution will be isotropic on average of course, but statistical variations mean that any given collapsing
region will see a slightly non-isotropic mass distribution surrounding it.

3



Figure 1: The cooling function, Λ(T,Z), as a function of temperature for gas in collisional ionization
equilibrium. Theh red curve is for primordial gas, while the blue curve is for gas of Solar metallicity.
The two peaks in the primordial curve correspond to cooling by collisional excitation of hyrdrogen
and helium. At high temperatures both curves become dominated by Bremsstrahlung radiation
(Λ ∝

√
T ).
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The angular momentum content of a dark matter halo can be characterized by the dimensionless
spin parameter defined as:

λ = |E|1/2|J|/GM5/2 ∼ |J |/MVRVVV, (10)

where E is the energy of the halo and J its angular momentum. The first form is the standard
definition, but the second is somewhat easier to work with. The typical value of λ is difficult to
calculate analytically (as it changes significantly during the non-linear parts of the gravitational
collapse of the dark matter halo), but numerical studies indicate that it has a typical value of
λ = 0.03–0.04 with significant dispersion.

Suppose that some mass of gas Md with angular momentum J in the halo is able to cool. If it
achieves rotational supprt against the pull of the dark matter at some radius Rd then we must have
that (

J

MdRd

)2

= V 2
c (Rd) =

GM(Rd)
Rd

, (11)

where M(R) is the mass of dark matter within radius R. Assuming that angular momentum is
conserved during the collapse of this gas then J is just equal to its initial value of J = λMdRVVV.
Further assuming that the dark matter has a ρ ∝ r−2 (not a bad approximation) such that M(R) ∝
R we find

λ2
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)2

V 2
V =
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)2 GMV
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, (12)

which simplifies to give
Rd = λRv. (13)

So, we should expect the size of a galaxy disk to be a fraction λ of the virial radius of the dark
matter halo. For the Milky Way Rv ≈ 300kpc and typical spin parameters are λ = 0.035, so we’d
expect Rd ≈ 10kpc. The half-mass radius of the Milky Way’s disk is around 6kpc, so this is a
pretty good estimate.

Note that we’ve made one or two important approximations here:

1. We assumed that the baryonic component of the halo has the same λ as the dark matter.
This turns out to be not exactly true.

2. We assumed that the angular momentum of the gas is conserved during collapse. Recent
numerical work suggests that this is actually a good approximation.

3. We ignored the galaxy’s self-gravity when computing the rotational support radius. We should
really replace M(R) with M(R) +Md on the right-hand side of eqn. (11). This would result
in a somewhat smaller radius Rd.

4. We ignored the backreaction of the baryons on the dark matter halo. The gravitational
potential due to the concentration of baryons in the halo center will cause the dark matter
halo to contract slightly, boosting the amount of dark matter in the inner regions. This too
will result in a slightly smaller disk.
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Figure 2: A sequence of snapshots from a simulation of two merging disk galaxies. The violent
merging process destroys the fragile disks and leaves something which looks more or less like an
elliptical galaxy (with some tidal features that will fade with time).

3 Merging/formation of spheroids

The other main class of galaxy are the ellipticals, which are not supported by rotation but instead
by the random motions of their stars. Since being first suggested by Toomre & Toomre in the 1970’s
the idea that ellipticals form through violent mergers of pre-existing galaxies has become the widely
accepted hypothesis for elliptical galaxy formation (at least for the most massive ellipticals).

The merging process is highly non-linear and can only be studied quantitatively using numerical
simulations (see Fig. 2). The basic idea though is that the merging process leads to large and
rapid fluctuations in the gravitational potential and that this tends to randomize the orbits of
stars (a process known as “violent relaxation” and first proposed by Lynden-Bell—it’s essentially
a maximization of entropy argument, although, as we’ve seen, entropy cannot be well-defined for
a gravitating system). The result is the destruction of any pre-existing disks and the formation of
a pressure supported spheroidal stellar distribution. N-body simulations show that the resulting
spheroid often has structural and kinemetical similarities with observed ellipticals.

If merging is such an important process, it’s important to ask how often it happens. In a cold dark
matter Universe, a dark matter halo can contain many smaller halos from earlier generations of
structure formation. These subhalos, each of which can in principle contain their own galaxy, will
be orbitting around their host halo. Suppose that there are N such subhalos in a host halo, each
moving with velocity of order VV (the virial velocity of the host halo). We’d expect a galaxy to

6



randomly run into another galaxy after a time tcoll where

πR2
galVVtcoll

3N
4πR3

V

= 1. (14)

For a galaxy cluster, N ∼ 1000, RV ≈ 1Mpc, VV ≈ 1000km/s and a typical galaxy radius is 10kpc.
Using these numbers we find tcoll ∼ 13Gyr, or about once in during the age of the Universe. In
practice, most of the encounters will be highly unbound, so will be fly-bys which may disturb the
galaxies but will not cause them to actually merge.

To get a significant number of mergers we actually need a dissipative process that can remove
energy from the orbits of subhalos causing them to sink towards the center of the host halo and
merge with any galaxy located there. This dissipation is provided by the process of dynamical
friction which arises due to the back reaction of dark matter particles in the host halo on the
orbitting subhalo.

Way back when we were considering the collisionless Boltzmann equation we derived the change in
the velocity of a test particle as it passed by a mass M . We made some approximations there, but
we can actually do the calculation exactly (see Binney & Tremaine for example). The result, where
we consider a dark matter particle of mass m from the host halo moving by a subhalo of mass M
at relative velocity at infinity V0 and with impact parameter b is:

∆V|| =
2m
M

(
1 +

b2V 4
0

G2M2

)−1

V0 (15)

and

∆V⊥ =
2mV 3

0

GM2

(
1 +

b2V 4
0

G2M2

)−1

b. (16)

If we now imagine a whole distribution of such dark matter particles flying by, we can derive the
rate of change of the subhalo velocity:

dV||
dt

= f(V0)
∫ bmax

0
2πbnV0∆V||db, (17)

or
dV||
dt = 2π ln(1 + Λ2)ρG2Mf(V0)V0

V 3
0

(18)

where Λ = bmaxV
2
0 /GM . The net change in the V⊥ component must be zero by symmetry. Thus,

the acceleration of the subhalo due to this dynamical friction process is:

dVM

dt
= 2π ln(1 + Λ2)ρG2M

∫
f(Vm)

(Vm −VM )
|Vm −VM |3

d3Vm. (19)

The integral has a useful form: replacing Vm by x and f(Vm) by ρ(x) we would have the integral
that gives us the gravitational force due to a mass density distribution. If we assume that the
velocity distribution is isotropic, then f(Vm) is spherically symmetric and, since we know that the
mass outside of radius r in a spherical mass distrribution does not contribute to the gravitational
field at radius r we can write

dVM

dt
= 2π ln(1 + Λ2)ρ

G2M

V 2
M

F (< VM )V̂M . (20)
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The rate at which this acceleration removes energy from the subhalo’s orbit is then

Ė = MVM ·
dVM

dt

= 2π ln(1 + Λ2)ρ
G2M2

VM
F (< VM ). (21)

Since |E| = MV 2
M/2 we have a timescale for dynamical friction of

τDF = |E|/Ė =
V 3

M

4π ln(1 + Λ2)ρG2MF (< VM )
. (22)

Using ρ = 3MV/4πR3
V and V 2

M ≈ V 2
V = GMV/RV we can simplify this to

τDF ≈ RV

VV

MV

M

1
F (< VV) ln(1 + Λ2)

∼ tH√
∆
MV

M

1
ln(1 + Λ2)

. (23)

Since ∆ ≈ 200 we expect satellites with mass M <∼MV/
√

200 to not be able to merge within a
Hubble time. More massive subhalos though will be dragged to the center of their host halo where
any galaxy they contain can then merge with any galaxy at that location.

4 Star formation and feedback

Once gas has collected into a dense stellar disk we expect that it should be able to cool further
(via various metal lines initially and then through the formation of molecules) to form molecular
clouds and eventually stars. If this were all that happened, each dark matter halo would eventually
contain a galaxy with a mass equal to Ωb/Ω0 times its total mass. We can predict the distribution
of dark matter halo masses (as you’ll see in Ay 127) and so this simple model allows us to compute
the corresponding distribution of galaxy masses. Unfortunately, it turns out to be wildly different
from what’s observed—there are far too many low mass galaxies in such a model. This is a long-
standing problem for galaxy formation theory to explain. The most widely accepted explanation is
that star formation and the subsequent supernova explosions lead to a negative feedback loop which
causes star formation to self-regulate and thereby reduce the fraction of a halo’s material which is
turned into stars significantly below Ωb/Ω0.

A single supernova explosion will release an energy of around 1051ergs in a form which could poten-
tially influence the surrounding galaxy (a much larger energy is released in the form of neutrinos,
but they just free-stream out of the galaxy). Since we expect on order of one supernova for ev-
ery 100M� of stars formed (given a standard IMF) we can say that roughly 1049ergs of energy is
deposited into the ISM per Solar mass of stars formed.

Consider a galaxy with a flat rotation curve, Vc. The gravitational potential energy gained in
moving a mass M from radius r1 to r2 in such a potential is ∆Φ = V 2

c ln r2/r1. Suppose then
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that we want to know how much mass supernovae could reasonably eject from such a galaxy. This
would be

1049ergsM−1
� M? = MeV

2
c ln r2/r1, (24)

where M? is the mass of stars formed and Me is the mass of gas ejected. The result won’t depend
too strongly on the ratio r2/r1, so let’s adopt r2/r1 ∼ 10 (to get the gas far out of the galaxy). The
above can then be re-written as

β ≡ Me

M?
= 5.5

(
Vc

200km/s

)−2

. (25)

This implies that we could expect to see outflows even from Milky Way-like galaxies at rates
comparable to the star formation rate and that outflows should be stronger for lower mass galaxies
(which have smaller VC). This assumes that all of the energy from the supernovae is efficiently
coupled into an outflow, which is unlikely to be the case in reality (some of the energy could be
radiated away during the initial phase of the explosion while the material is still very dense). Some
“feeeback” of this type seems to be required by galaxy formation models though. Without it, far
too many faint, low-mass galaxies are predicted (i.e. many more than are observed) due to the
prevalence of low mass dark matter halos. Feedback significantly reduces the luminosity and mass
of a galaxy that can form in a given dark matter halo. As a result, galaxies of fixed stellar mass
must form in more massive (and less abundant) dark matter halos when feedback occurs. This
greatly reduces their numbers, bringing them in line with osbervations.

While feedback from supernovae is effective in low mass galaxies we can see from eqn. (25) that it
quickly becomes irrelevant in more massive galaxies. In a galaxy cluster for example, the circular
speed is of order 1000km/s and so β ≈ 0.2 leading to very weak feedback. For this reason, galaxy
formation models which include only supernovae feedback tend to produce overly massive galaxies
at the centers of cluster-sized halos.

This problem was traditionally “solved” by simply deciding that gas in such clusters couldn’t cool.
A more modern approach is to explain this lack of cooling by assuming that it is offset by heating
due to energy input from a forming supermassive black hole. Osbervations suggest that all galaxies
contain a black hole with a mass of about 0.1% of the stellar mass of the spheroidal component. The
formation of such a black hole therefore releases an energy of 0.001εM�c2 ≈ 2× 1051εergs for every
Solar mass of stars formed. Here ε is the radiative efficiency of the black hole (i.e. the fraction of
the rest mass energy of accreted material that is emitted as radiation rather than being swallowed
by the black hole) and is typically of order 10%. This energy release can therefore be significantly
larger than that associated with supernovae (accretion onto a black hole is a much more efficient
process than nuclear fusion for extracting energy from matter!) and sufficient to offset cooling in
even the most massive clusters. The outstanding problems in this scenario are to explain precisely
how a black hole creates and outflow and couples it to the surrounding atmosphere of hot gas and
to determine whether this can really lead to self-regulation of star formation (and thereby explain
the 0.1% ratio of black hole to stellar mass).
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