Midterm: Evolution of Stellar Populations-Solution

Structure and Dynamics of Galaxies, Ay 124, Winter 2009

February 3, 2009

1. Consider a rotating bar in a galaxy. Let the z axis coincide with the principal axis of the tensor \mathbf{I} and assume that the density distribution of the bar is stationary in a frame which rotates with angular frequency Ω. Show that, at an instant when $I_{x y}=0$, the term $\frac{1}{2} \mathrm{~d}^{2} \mathbf{I} / \mathrm{d} t^{2}$ which appears in the tensor virial theorem is a diagonal tensor with components $\left(I_{y y}-I_{x x}\right)$, $\left(I_{x x}-I_{y y}\right)$ and 0 . Hence show that

$$
\begin{equation*}
\Omega^{2}=\frac{\left(W_{x x}-W_{y y}\right)+2\left(T_{x x}-T_{y y}\right)+\left(\Pi_{x x}-\Pi_{y y}\right)}{2\left(I_{x x}-I_{y y}\right)}, \tag{1}
\end{equation*}
$$

and, if $T_{z z}=0$,

$$
\begin{equation*}
\frac{v_{0}^{2}}{\sigma_{0}^{2}}=(1-\delta) \frac{W_{x x}+W_{y y}}{W_{z z}}-2 \tag{2}
\end{equation*}
$$

where $v_{0}^{2} \equiv 2\left(T_{x x}+T_{y y}\right) / M, \sigma_{0}^{2} \equiv\left(\Pi_{x x}+\Pi_{y y}\right) / 2 M$ and $(1-\delta)\left(\Pi_{x x}+\Pi_{y y}\right) \equiv 2 \Pi_{z z}$. (Hint: The tensor transformation between the rotating and non-rotating frames is

$$
\widetilde{\mathbf{I}}=\left(\begin{array}{ccc}
\cos \Omega t & \sin \Omega t & 0 \tag{3}\\
-\sin \Omega t & \cos \Omega t & 0 \\
0 & 0 & 1
\end{array}\right) \mathbf{I}\left(\begin{array}{ccc}
\cos \Omega t & -\sin \Omega t & 0 \\
\sin \Omega t & \cos \Omega t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

.)
Solution: In the rotating frame, the moment of inertia tensor can be written as

$$
\mathbf{I}_{\mathrm{rot}}=\left(\begin{array}{ccc}
I_{x x} & 0 & 0 \tag{4}\\
0 & I_{y y} & 0 \\
0 & 0 & I_{z z}
\end{array}\right)
$$

Transforming this to the non-rotating frame using the given transformation gives

$$
\tilde{\mathbf{I}}=\left(\begin{array}{ccc}
I_{x x} \cos ^{2} \Omega t+I_{y y} \sin ^{2} \Omega t & -\frac{1}{2}\left(I_{x x}-I_{y y}\right) \sin 2 \Omega t & 0 \tag{5}\\
-\frac{1}{2}\left(I_{x x}-I_{y y}\right) \sin 2 \Omega t & I_{x x} \sin ^{2} \Omega t+I_{y y} \cos ^{2} \Omega t & 0 \\
0 & 0 & I_{z z}
\end{array}\right)
$$

We know that the components $I_{x x}, I_{y y}$ and $I_{z z}$ are constant, so

$$
\begin{align*}
& \frac{1}{2} \mathrm{~d}^{2} \tilde{I}_{x x}=\Omega^{2} \cos 2 \Omega t\left(I_{y y}-I_{x x}\right) \\
& \frac{1}{2} \mathrm{~d}^{2} \tilde{I}_{y y}=\Omega^{2} \cos 2 \Omega t\left(I_{x x}-I_{y y}\right) \\
& \frac{1}{2} \mathrm{~d}^{2} \tilde{I}_{z z}=0 . \tag{6}
\end{align*}
$$

If $I_{12}=0$ then $\sin 2 \Omega=0$ which implies $\cos 2 \Omega t=1$, so

$$
\begin{align*}
& \frac{1}{2} \mathrm{~d}^{2} \tilde{I}_{x x}=\Omega^{2}\left(I_{y y}-I_{x x}\right) \\
& \frac{1}{2} \mathrm{~d}^{2} \tilde{I}_{y y}=\Omega^{2}\left(I_{x x}-I_{y y}\right) \\
& \frac{1}{2} \mathrm{~d}^{2} \tilde{I}_{z z}=0 . \tag{7}
\end{align*}
$$

Then, from the tensor virial theorem $\frac{1}{2} \mathrm{~d}^{2} \widetilde{\mathbf{I}} / \mathrm{d} t^{2}=2 \mathbf{T}+\boldsymbol{\Pi}+\mathbf{W}$ we get

$$
\begin{align*}
\Omega^{2}\left(I_{y y}-I_{x x}\right) & =2 T_{x x}+\Pi_{x x}+W_{x x} \\
\Omega^{2}\left(I_{x x}-I_{y y}\right) & =2 T_{y y}+\Pi_{y y}+W_{y y} \\
0 & =2 T_{z z}+\Pi_{z z}+W_{z} \tag{8}
\end{align*}
$$

which lead to

$$
\begin{equation*}
\Omega^{2}=\frac{\left(W_{x x}-W_{y y}\right)+2\left(T_{x x}-T_{y y}\right)+\left(\Pi_{x x}-\Pi_{y y}\right)}{2\left(I_{x x}-I_{y y}\right)} \tag{9}
\end{equation*}
$$

Assuming $T_{z z}=0$ implies $\Pi_{z z}=-W_{z z}$ and so

$$
\begin{equation*}
\frac{v_{0}^{2}}{\sigma_{0}^{2}}=4 \frac{T_{x x}+T_{y y}}{\Pi_{x x}+\Pi_{y y}} . \tag{10}
\end{equation*}
$$

Adding together the $x x$ and yy components of the tensor virial theorem implies $2 T_{x x}+\Pi_{x x}+$ $W_{x x}+2 T_{y y}+\Pi_{y y}+W_{y y}=0$ and so

$$
\begin{align*}
\frac{v_{0}^{2}}{\sigma_{0}^{2}} & =-2 \frac{\Pi_{x x}+W_{x x}+\Pi_{y y}+W_{y y}}{\Pi_{x x}+\Pi_{y y}} \\
& =-2-2 \frac{W_{x x}+W_{y y}}{\Pi_{x x}+\Pi_{y y}} \\
& =-2+(1-\delta) \frac{W_{x x}+W_{y y}}{W_{z z}} . \tag{11}
\end{align*}
$$

2. a) By taking a suitable moment of the collisionless Boltzmann equation, show that in a steady-state axisymmetric galaxy

$$
\begin{equation*}
\frac{\partial\left(\nu \overline{v_{R}^{2} v_{\phi}}\right)}{\partial R}+\frac{\partial\left(\nu \overline{v_{R} v_{z} v_{\phi}}\right)}{\partial z}-\frac{\nu}{R}\left(\overline{v_{\phi}^{3}}-\overline{v_{\phi}} R \frac{\partial \Phi}{\partial R}\right)+\frac{2 \nu}{R} \overline{v_{R}^{2} v_{\phi}}=0 . \tag{12}
\end{equation*}
$$

b) Given that the system is symmetric in z, and that all odd moments of $v_{\phi}-\overline{v_{\phi}}$ vanish, so $\overline{v_{R}^{2}\left(\left(\overline{v_{\phi}^{3}}-\overline{v_{\phi}} R \frac{\partial \Phi}{\partial R}\right)\right)}=0$ and $\overline{\left.\left(\overline{v_{\phi}^{3}}-\overline{v_{\phi}} R \frac{\partial \Phi}{\partial R}\right)\right)^{2}}=0$, etc., show that at $z=0$

$$
\begin{equation*}
\overline{v_{R}^{2}}\left(\frac{\partial \overline{v_{\phi}}}{\partial R}+\overline{v_{\phi}} R\right)-\frac{2}{R} \overline{v_{\phi}} \overline{\left(v_{\phi}-\overline{v_{\phi}}\right)^{2}}=0 . \tag{13}
\end{equation*}
$$

Hence, using the Jeans equation

$$
\begin{equation*}
\frac{\partial\left(\nu \overline{v_{R}^{2}}\right)}{\partial R}+\frac{\partial\left(\nu \overline{v_{R} v_{z}}\right)}{\partial z}+\nu\left(\frac{\overline{v_{R}^{2}}-\overline{v_{\phi}^{2}}}{R}+\frac{\partial \Phi}{\partial R}\right)=0 \tag{14}
\end{equation*}
$$

show that

$$
\begin{equation*}
\frac{\sigma_{\phi}^{2}}{\sigma_{R}^{2}} \equiv \frac{\overline{\left(v_{\phi}-\overline{v_{\phi}}\right)^{2}}}{\overline{v_{R}^{2}}} \approx \frac{-B}{A-B} \tag{15}
\end{equation*}
$$

where $A=-\frac{1}{2} R \mathrm{~d} \Omega \mathrm{~d} R$ and $B=-\left(\Omega+\frac{1}{2} R \mathrm{~d} \Omega / \mathrm{d} R\right)\left(\right.$ with $\left.\Omega^{2}=R^{-1}(\partial \Phi / \partial R)_{z=0}\right)$ are the Oort constants.
Solution: Begin with the collisionless Boltzmann equation in cylindrical coordinates

$$
\begin{equation*}
v_{R} \frac{\partial f}{\partial R}+v_{z} \frac{\partial f}{\partial z}+\left(\frac{v_{\phi}^{2}}{R}-\frac{\partial \Phi}{\partial R}\right) \frac{\partial f}{\partial v_{R}}-\frac{v_{R} v_{\phi}}{R} \frac{\partial f}{\partial v_{\phi}}-\partial \Phi \partial z \frac{\partial f}{\partial v_{z}}=0 \tag{16}
\end{equation*}
$$

multiply by $v_{R} v_{\phi}$ and integrate over all velocities to obtain

$$
\begin{equation*}
\frac{\partial\left(\nu \overline{v_{R}^{2} v_{\phi}}\right)}{\partial R}+\frac{\partial\left(\nu \overline{v_{R} v_{\phi} v_{z}}\right)}{\partial z}-\frac{\nu}{R}\left(\overline{v_{\phi}^{3}}-\overline{v_{\phi}} R \frac{\partial \Phi}{\partial R}\right)+\frac{2 \nu}{R} \overline{v_{R}^{2} v_{\phi}^{2}}=0 \tag{17}
\end{equation*}
$$

where we've used the fact that

$$
\begin{equation*}
\int v_{j} \frac{\partial f}{\partial v_{i}} \mathrm{~d}^{3} \mathbf{v}=-\int \partial v_{j} \partial v_{i} f \mathrm{~d}^{3} \mathbf{v}=-\delta_{i j} \nu \tag{18}
\end{equation*}
$$

Since we're told that the odd moments of $v_{\phi}-\overline{v_{\phi}}$ vanish we have that $\overline{v_{R}^{2} v_{\phi}}=\overline{v_{R}^{2}} \overline{v_{\phi}}$ and $\overline{v_{R} v_{z} v_{\phi}}=\overline{v_{R} v_{z} v_{\phi}}$. Using these in the above equation and subtracting $\overline{v_{\phi}}$ times the given Jeans equation then leaves

$$
\begin{equation*}
\nu \overline{v_{R}^{2}} \frac{\partial \overline{v_{\phi}}}{\partial R}+\nu \overline{v_{r} v_{z}} \frac{\partial \overline{v_{\phi}}}{\partial z}-\frac{\nu}{R}\left({\overline{v_{\phi}}}^{3}-\overline{v_{\phi}} \overline{v_{\phi}^{2}}\right)+\frac{\nu}{R} \overline{v_{R}^{2}} \overline{v_{\phi}}=0 \tag{19}
\end{equation*}
$$

Again using the fact that odd moments vanish $\left({\overline{v_{\phi}}}^{3}-\overline{v_{\phi}} \overline{v_{\phi}^{2}}\right)=2 \overline{v_{\phi}} \overline{\left(v_{\phi}-\overline{v_{\phi}}\right)^{2}}$ and dividing through by ν leaves

$$
\begin{equation*}
\overline{v_{R}^{2}}\left(\frac{\partial \overline{v_{\phi}}}{\partial R}+\frac{\overline{v_{\phi}}}{R}\right)-\frac{2}{R} \overline{v_{\phi}} \overline{\left(v_{\phi}-\overline{v_{\phi}}\right)^{2}}=0 \tag{20}
\end{equation*}
$$

Assuming small asymmetric drag, ${\overline{v_{\phi}}}^{2} \approx v_{\mathrm{c}}^{2}=-R \partial \Phi / \partial R$ which gives

$$
\begin{equation*}
\frac{\sigma_{\phi}^{2}}{\sigma_{R}^{2}} \equiv \frac{\overline{\left(v_{\phi}-\overline{v_{\phi}}\right)^{2}}}{\overline{v_{R}^{2}}} \approx \frac{-B}{A-B} \tag{21}
\end{equation*}
$$

3. Prove that a system of N self-gravitating point masses with positive energy must disrupt, in the sense that at least one star must escape. Hint: use the virial theorem, and prove that the moment of inertia must increase without limit.

Solution: We know that such a system of particles obeys the tensor virial theorem. We can therefore take the trace of that equation and apply the scalar virial theorem $\frac{1}{2} \mathrm{~d}^{2} I / \mathrm{d} t^{2}=$ $2 K+W$. In terms of the total energy, $E=K+W$, this becomes $\frac{1}{2} \mathrm{~d}^{2} I / \mathrm{d} t^{2}=K+E$. Since $E>0$ for a positive energy system and since the kinetic energy is always positive this implies that $\mathrm{d}^{2} I / \mathrm{d} t^{2}>0$ always. The curve of I vs. t must therefore be concave upwards and I must therefore increase without bound as t increases. Since $I_{i j}=\sum_{\alpha=1}^{N} m^{\alpha} x_{i}^{\alpha} x_{j}^{\alpha}$ this implies that at least one star must reach an arbitrarily large coordinate value (i.e. be ejected to infinity).

