Ay124: Homework \#1 Solution Set

Problem \#1. Apparent Bolometric Magnitudes of

(a) Sun-like star: For the sun: $M=4.72, \mathrm{D}=50 \mathrm{pc}$

$$
m=M-5+5 \log (D / \mathrm{pc})=8.21
$$

(b) Light Bulb

$$
\begin{gathered}
M_{L B}-M_{\odot}=-2.5 \log \frac{L_{L B}}{L_{\odot}}=61.5 \\
M_{L B}=66.2 \\
D=384400 \mathrm{~km}=1.3 \times 10^{-8} p c \\
m=66.2-5+5 \log \left(1.3 \times 10^{-8}\right)=21.7
\end{gathered}
$$

(c) Galaxy

$$
\begin{gathered}
L_{\text {Gal }}=1.5 \times 10^{10} L_{\odot} \\
M_{\text {Gal }}-M_{\odot}=-2.5 \log \frac{L_{\text {Gal }}}{L_{\odot}}=-25.44 \\
M_{\text {Gal }}=-20.72 \\
m=-20.72-5+5 \log \left(2 \times 10^{7}\right)=10.79
\end{gathered}
$$

(d) Quasar

$$
\begin{gathered}
M_{Q}-M_{\odot}=-2.5 \log \frac{10^{46}}{3.8 \times 10^{33}}=-31.05 \\
M_{Q}=-26.33 \\
m=-26.33-5+5 \log 10^{9}=13.67
\end{gathered}
$$

By the way, (a) is a typical star in one of the major catalogs (HD, BD, SAO, etc.), (c) is a bright galaxy in the Virgo cluster, (d) is similar to 3 C 273 or 3 C 48 (the first quasars discovered).

Problem \#2. Galaxy flux
Flux from a $V=22^{m}$ galaxy
For $V=0^{m}$, the flux is:

$$
F_{\nu, 0}=3800 \mathrm{Jy}=3.8 \times 10^{-20} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{Hz}
$$

$$
\begin{gathered}
m_{\text {Gal }}-m_{0}=-2.5 \log \frac{F_{\nu, \text { Gal }}}{F_{\nu, 0}}=22-0=22 \\
\log \frac{F_{\nu, \text { Gal }}}{F_{\nu, 0}}=-8.8 \\
F_{\nu, \text { Gal }}=10^{-8.8} \times F_{\nu, 0} \\
F_{\nu, \text { Gal }}= \\
6.0 \times 10^{-29} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{Hz}
\end{gathered}
$$

We also want F_{λ}.

$$
\begin{gathered}
F_{\lambda} d \lambda=F_{\nu} d \nu \\
F_{\lambda}=F_{\nu} \frac{d \nu}{d \lambda}
\end{gathered}
$$

Since $\nu=c / \lambda, \frac{d \nu}{d \lambda}=\frac{c}{\lambda^{2}}$ We approximate the V band as $\lambda=5500 \AA=5.5 \times 10^{-5} \mathrm{~cm}$

$$
\begin{gathered}
F_{\lambda}=\frac{3 \times 10^{10}}{\left(5.5 \times 10^{-5}\right)^{2}} F_{\nu}=9.9 \times 10^{18} F_{\nu} \\
F_{\lambda}=6.0 \times 10^{-10} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{cm}=6.0 \times 10^{-18} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \AA
\end{gathered}
$$

The energy of a typical photon in the V band is $E=\frac{h c}{\lambda}$. Using our value of lambda above, $h=6.63 \times 10^{-27} \mathrm{erg} \mathrm{s}$, and $c=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$, we find that $E=3.62 \times 10^{-12} \mathrm{erg}$.

$$
\text { PHOTON RATE }=\frac{F_{\lambda} \Delta \lambda \pi R^{2}}{E}
$$

$$
\begin{aligned}
& \Delta \lambda=900 \AA \\
& R=254 \mathrm{~cm}
\end{aligned}
$$

PHOTON RATE $=300$ photons $/ \mathrm{sec}$

Problem \#3. Sirius A and B.

First, find the ratio of the masses from the ratio of the distances from the center of mass:

$$
\frac{m_{A}}{m_{B}}=\frac{r_{B}}{r_{A}}=\frac{1}{0.466}=2.15
$$

Next, calculate the total mass from Kepler's third law:

$$
P^{2}=\frac{4 \pi^{2} a^{3}}{G\left(m_{A}+m_{B}\right)}
$$

The distance to the star system is

$$
d=\frac{1}{0.377^{\prime \prime}}=2.65 \mathrm{pc}
$$

So the semimajor axis is

$$
\begin{gathered}
a=d \times 7.62^{\prime \prime} \times \frac{1 \mathrm{rad}}{206265^{\prime \prime}}=9.8 \times 10^{-5} p c=3.03 \times 10^{14} \mathrm{~cm}=20.2 \mathrm{AU} \\
P=49.94 \mathrm{yr}=1.6 \times 10^{9} \mathrm{~s}
\end{gathered}
$$

Plugging in to Kepler's third law, we find

$$
m=m_{A}+m_{B}=6.70 \times 10^{33} \mathrm{~g}=3.35 M_{\odot}
$$

Then compute the individual masses:

$$
\begin{aligned}
& m_{A}=\frac{m}{1+\frac{m_{B}}{m_{A}}}=4.57 \times 10^{33} \mathrm{~g}=2.28 M_{\odot} \\
& m_{B}=m-m_{A}=2.13 \times 10^{33} \mathrm{~g}=1.06 M_{\odot}
\end{aligned}
$$

The bolometric luminosities relative to the sun are given by:

$$
\begin{gathered}
M_{B O L}-M_{B O L, \odot}=-2.5 \log \frac{L}{L_{\odot}} \\
M_{B O L, \odot}=4.72, M_{A}=1.33, M_{B}=8.57
\end{gathered}
$$

So $L_{A}=22.7 L_{\odot}$ and $L_{B}=2.88 \times 10^{-2} L_{\odot}$
Next, compute the radius of Sirius $B\left(T=2.7 \times 10^{4} \mathrm{~K}\right)$ from the Stefan-Boltzmann equation:

$$
\begin{gathered}
L=4 \pi R^{2} \sigma T^{4} \\
R=5.4 \times 10^{3} \mathrm{~km}=0.85 R_{\text {Earth }}=7.8 \times 10^{-3} R_{\odot}
\end{gathered}
$$

Note that this is the classic estimate of the radius of the first discovered white dwarf, Sirius B. White dwarfs contain the mass of about $1 M_{\odot}$ inside a radius the size of the Earth! Problem \#3. Star Cluster
(a) Average stellar mass

$$
\begin{gathered}
<m>=\frac{\int m d N}{\int d N} \\
<m>=\frac{\int_{m_{\min }}^{m_{\max }} m \frac{d N}{d M} d m}{\int_{m_{\min }}^{m_{\max }} \frac{d N}{d M} d m} \\
\frac{d N}{d M}=k m^{-(1+x)} \\
<m>=\frac{\int_{m_{\min }}^{m_{\max }} m^{-x} d m}{\int_{m_{\min }}^{m_{\operatorname{mix}}} m^{-(1+x)} d m} \\
<m>=\frac{-x}{1-x} \frac{m_{\max }^{1-x}-m_{\min }^{1-x}}{m_{\max }^{-x}-m_{\min }^{-x}}
\end{gathered}
$$

For our case $x=1.35, m_{\min }=0.08 M_{\odot}, M_{\max }=80 M_{\odot}$ Plugging in those values to the equation above yields:

$$
<m>=0.28 M_{\odot}
$$

(b) Average stellar luminosity Note that we can easily see the value of the proportionality constant in the mass-luminosity relationship since we know the Sun's values.

$$
\frac{L}{L_{\odot}}=\frac{m^{4}}{M_{\odot}^{4}}
$$

¿From now on, I will simply assume that L,m are measured in solar units to avoid writing the constants every line! We evaluate the average in the same way as part (a):

$$
\begin{gathered}
<L>=\frac{\int L \frac{d N}{d M} d m}{\int \frac{d N}{d M} d m} \\
<L>=\frac{\int_{m_{\operatorname{mix}}}^{m_{\max }} m^{3-x} d m}{\int_{m_{\text {max }}}^{m_{\text {max }}}} m^{-(1+x)} d m \\
<L>=\frac{-x}{4-x} \frac{m_{\text {max }}^{4-x}-m_{\min }^{4-x}}{m_{\text {max }}^{-x}-m_{\text {min }}^{-x}}
\end{gathered}
$$

Using our values for this cluster:

$$
<L>=1860 L_{\odot}
$$

(c) Bolometric magnitude

$$
\begin{gathered}
M_{T O T}=10^{3} M_{\odot} \\
N_{\text {stars }}=\frac{M_{T O T}}{<m>}=\frac{10^{3}}{0.28}=3600 \\
L_{T O T}=N_{\text {stars }} \times<L>=6.6 \times 10^{6} L_{\odot} \\
M_{B O L}=M_{B O L, \odot}-2.5 \log \frac{L_{T O T}}{L_{\odot}}=-12.3
\end{gathered}
$$

(d) Mass distribution

$$
\begin{gathered}
M_{+}=\frac{\int_{m_{\odot}}^{m_{\max }} m^{-x} d m}{\int_{m_{\operatorname{mix}}}^{m_{\operatorname{mix}}} m^{-x} d m} \\
M_{+}=\frac{1-x}{1-x} \frac{m_{\max }^{1-x}-m_{\odot}^{1-x}}{m_{\max }^{1-x}-m_{\min }^{1-x}}
\end{gathered}
$$

For our cluster:

$$
M_{+}=0.36
$$

Clearly then the fraction of mass due to stars below one solar mass is:

$$
M_{-}=0.64
$$

(e) Luminosity distribution

$$
\begin{gathered}
L_{+}=\frac{\int_{m_{\odot}}^{m_{\max }} m^{4} m^{-(1+x)} d m}{\int_{m_{\min }}^{m_{\max }} m^{4} m^{-(1+x)} d m} \\
L_{+}=\frac{m_{\max }^{4-x}-m_{\odot}^{4-x}}{m_{\max }^{-x}-m_{\min }^{4-x}} \\
L_{+}=0.999991 \\
L_{-}=0.000009
\end{gathered}
$$

High mass stars completely dominate the luminosity even though they are less than half of the mass!

