# Problem Set \#4: Elements of Stellar Dynamics 

Structure and Dynamics of Galaxies, Ay 124, Winter 2009

January 15, 2009

1. [Binney \& Tremaine, Problem 4-3] By analogy with the derivation for cylindrical coordinates, show that in spherical cooordinates the collisionless Boltzmann equation is

$$
\begin{align*}
0= & \frac{\partial f}{\partial t}+v_{r} \frac{\partial f}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial f}{\partial \theta}+\frac{v_{\phi}}{r \sin \theta} \frac{\partial f}{\partial \phi}+\left(\frac{v_{\theta}^{2}+v_{\phi}^{2}}{r}-\frac{\partial \Phi}{\partial r}\right) \frac{\partial f}{\partial v_{r}} \\
& +\frac{1}{r}\left(v_{\phi}^{2} \cot \theta-v_{r} v_{\theta}-\frac{\partial \Phi}{\partial \theta}\right) \frac{\partial f}{\partial \theta}-\frac{1}{r}\left[v_{\phi}\left(v_{r}+v_{\theta} \cot \theta\right)+\frac{1}{\sin \theta} \frac{\partial \Phi}{\partial \phi}\right] \frac{\partial f}{\partial v_{\phi}} \tag{1}
\end{align*}
$$

2. [Binney \& Tremaine, Problem 4-5] Suppose the principal axes of the velocity ellipsoid near the Sun are always parallel to the unit vectors of spherical coordinates. Then show that for $|z| / R$ small, $\overline{v_{R} v_{z}} \approx\left(\overline{v_{R}^{2}}-\overline{v_{\theta}^{2}}\right)(z / R)$. (Hint: Write $v_{R}$ and $v_{z}$ in terms of $v_{r}$ and $v_{\theta}$, and then average $v_{R} v_{z}$ using $\overline{v_{r} v_{\theta}}=0$.)
3. [Binney \& Tremaine, Problem 4-10] In a spherical stellar system with mass profile $M(r)$, a stellar population with number density $\nu(r)$ has anisotropy parameter $\beta \equiv 1-\left(\overline{v_{\theta}^{2}} / \overline{v_{r}^{2}}\right)=$ $1-\left(\overline{v_{\phi}^{2}} / \overline{v_{r}^{2}}\right)$ of the form $\beta(r)=r^{2} /\left(r_{a}^{2}+r^{2}\right)$, where $r_{a}$ is a constant. Show that

$$
\begin{equation*}
\overline{v_{r}^{2}}=\frac{\mathrm{G} \int_{r}^{\infty}\left[\left(r_{a} / r^{\prime}\right)^{2}+1\right] \nu\left(r^{\prime}\right) M\left(r^{\prime}\right) \mathrm{d} r^{\prime}}{\left(r_{a}^{2}+r^{2}\right) \nu(r)} . \tag{2}
\end{equation*}
$$

