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1)

Clearly, for t < tMS, the observed stellar mass distribution will be equal to the IMF:
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For times t > tMS,  stars will begin to move off of the main sequence.  Assuming every star of mass M  moves off the main
sequence after a given time tMS@MD, the removal rate of such stars from the main sequence will be equal to the formation rate of
the stars at the time time t - tMS:
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Hence we can derive and expression for the initial mass fraction in terms of the observed mass fraction:

f0@MD =
a ‰a t
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f@M, tD

for t > tMS, and f0@MD = a

b
H1 - ‰-a tL-1 f@MD for t < tMS

2)

a)

The general solution for the evolution of the metallicity for an accreting-box model of star formation is given by Eq. 5.57:

Z = p 1 - C ‰-u - ‰-u
‡
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u
‰u

„LogAMgE

„u
„u

For our model, the change in gas mass is given by a fraction q of the accreted mass, which is equal to the change in the total
mass: dMg = q dMt.  Defining a parameter u such that du = dMt ëMg, we have:
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For our model, the change in gas mass is given by a fraction q of the accreted mass, which is equal to the change in the total
mass: dMg = q dMt.  Defining a parameter u such that du = dMt ëMg, we have:

dMg = q Mg du

Mg = Mg0 ‰q u

Plugging this expression into our formula for Z, we have:

Z = p 1 - C ‰-u - ‰-u
‡
0

u
‰u

„ILogAMg0E + q uM

„u
„u = p 1 - C ‰-u - q ‰-u

‡
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u
‰u „u

= p H1 - C ‰-u - q ‰-u H‰u - 1LL = p H1 - C ‰-u - q H1 - ‰-uLL

If we associate Mg0 with the initial gas mass then u=0 initially.  As the initial metallicity is zero, we must have Z(u=0)=0, so C=1
and

Z = p H1 - qL H1 - ‰-uL

b)

dMs = H1 - qL dMt = H1 - qL Mg du = H1 - qL Mg0 ‰q u du

Ms@uD =
1 - q

q
Mg0 H‰q u - 1L

Ms@u2D =
1 - q

q
Mg0 H‰q u1 - 1L

Mg@u0D = Mg0 ‰q u0
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=

1-q

q
Mg0 H‰q u1 - 1L
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1 - q

q
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Locally, there is very little ongoing star formation, so we can approximate Ms@uD º constant and take u1 = u0

Ms

Mg
=
1 - q

q
H‰q u - 1L ‰-q u =

1 - q

q
H1 - ‰-q uL

In the solar neighborhood, the mass of stars dominates over the gas mass, so we should expect Ms >> Mg.  As 1 - ‰-q u § 1 for all

positive q and u, this implies that 1-q
q

>> 1 and hence that q<< 1 in the solar neighborhood.

c)

For u0 >> 1, the metallicity is approximately

Z0 = p H1 - qL H1 - ‰-u0L º p H1 - qL

The ratio of metallicities at u0 and u1 is then
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The ratio of metallicities at u0 and u1 is then

Z1

Z0
=
p H1 - qL H1 - ‰-u1L

p H1 - qL
= 1 - ‰-u1

‰-u1 = 1 -
Z1

Z0

Hence we have an expression for u1 in the limit of large u0:

u1 = -LogB1 -
Z1

Z0
F

Thus in the limit of Z1 << Z0 we have

u1 = -LogB1 -
Z1

Z0
F º

Z1

Z0
<< 1

We can now rewrite our expression for the gas/star mass ratio at times 1 and 0, given u1 << 1:

Ms@u1D

Mg@u0D
=
1 - q

q
H‰q u1 - 1L ‰-q u0 º

1 - q

q
H1 + q u1 - 1L ‰-q u0 = H1 - qL u1 ‰-q u0

Replacing u1 with the expression above, and noting that q<<1 in galaxies like our own, we have:

Ms@u1D

Mg@u0D
º -LogB1 -

Z1

Z0
F ‰-q u0

3)

S@RD = S0 ‰-RêRd

V@RD = 200 km ê s

Q = 0.75

The dispersion relation of waves in a fluid disk is given by

w2 = k2 - 2 p G S k +vs2 k2

Oscillatory in the disk will be stable if w is real, so for the disk to be unstable we must have

k2 - 2 p G S k +vs2 k2 < 0

We can solve this equation as a quadratic in the wave number k:

SolveAk2 - 2 p G S Abs@kD + vs2 k2 == 0, kE

::k Ø
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2

vs
2
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>,

:k Ø
-G p S + G2 p2 S2 - k2 vs

2

vs
2

>, :k Ø
G p S + G2 p2 S2 - k2 vs

2

vs
2

>>

We can rewrite these solutions by taking the Toomre parameter Q ª
vs k
pG S

:
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We can rewrite these solutions by taking the Toomre parameter Q ª
vs k
pG S

:

k =
G p S ± G2 p2 S2 - k2 vs

2

vs
2

=

1 ± 1 - J
k vs
G p S

N
2

vs
2 ë G p S

=
1 ± 1 - Q2

vs
2 ë G p S

We can evaluate the two critical values of k between which the disk is unstable to oscillations, noting that our disk has Q=0.75,
S@R0D = S0 ‰-R0ëRd , and taking a typical sound speed of 10 km/s:

S Ø I2.6 108 Msun ë kpc2M ‰-H8 kpcLêH3.5 kpcL

S Ø
2.64424 µ 107 Msun

kpc2

The critical wavenumbers for instability are then:

k Ø
1 ± 1 - Q2

vs
2 ë HG p SL

cm-1 ê. 9Q Ø 0.75, vs Ø 106 , G Ø 6.67 10-8, S Ø 2.64 107 Msun ë kpc2= ê.

9Msun Ø 1.99 1033, kpc Ø 3.086 1021=

k Ø
1.15595 µ 10-21 H1 ± 0.661438L

cm

Hence the disk will be unstable to wavenumbers in the range:

1.21

kpc
< k <

5.93

kpc

or

1.06 kpc < l < 5.19 kpc

As stable perturbations oscillate as A ∝ ‰Â w t, unstable perturbations (with imaginary values of w) will grow as A ∝ ‰ w t, where
w = Â w for imaginary w, and hence perturbations will grow on a timescale 1 êw.  Thus the timescale of the growth is (for a

typical wavenumber of ~4/kpc):

k Ø Q p G S ê vs s-1 ê. 9Q Ø 0.75, vs Ø 106 , G Ø 6.67 10-8, S Ø 2.64 107 Msun ë kpc2= ê.

9Msun Ø 1.99 1033, kpc Ø 3.086 1021=

k Ø
8.66966 µ 10-16

s

w2 Ø Ik2 - 2 p G S k + vs2 k2M s-2 ê. 9k Ø 8.67*^-16, vs Ø 106 , G Ø 6.67 10-8,

S Ø 2.64 107 Msun ë kpc2, k Ø 4 kpc-1= ê. 9Msun Ø 1.99 1033, kpc Ø 3.086 1021=

w2 Ø -
5.64881 µ 10-31

s2
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tgrowth Ø I-w2M
-1ê2

s ê. :w2 Ø -5.65*^-31, s Ø I3.15 107M
-1
yr>

tgrowth Ø 4.22343 µ 107 yr

Thus the disk instabilities would grow exponentially on a timescale of tens of millions of years.
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