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1)
Clearly, for ¢ < T\vs, the observed stellar mass distribution will be equal to the IMF:
d¢

—[t] =Be ™" ¢o[M]
dt

t d¢ t
O[M, t] = J —[M, t] dt = BJ e *t dt ¢o[M]
o dt o

6[M, ] =Ba (1-e™%) ¢o[M]

For times ¢ > Tys, stars will begin to move off of the main sequence. Assuming every star of mass M moves off the main
sequence after a given time Tys[M], the removal rate of such stars from the main sequence will be equal to the formation rate of
the stars at the time time 7 — Tys:

d¢

— M, t] =B (e®F-e (™)) ¢4 [M]

dt

t d¢ Tus t
o[M, t] = J — [M, t] dt = /3-[ et ¢o[M] dt +/3j (@t -e@® ™)) ¢o[M] dt
o dt 0 Tus

=B (fe'“ dt - f @ * (t-Tus) dlt] $o [M]
o Tus

- ,3 (_a—l (e—at_l) +a—1 eatMs (e—at_e—utms)) ¢0[M]
d[M, t] = Bate ™t (-1+e*™s) ¢o[M]

Hence we can derive and expression for the initial mass fraction in terms of the observed mass fraction:

aeat
$o[M] = —— ¢ [M, t]
B (e*™s - 1)

for t > Tys, and ¢g[M] = % (1—e ) ¢[M] for 1 < T;s

2)

a)

The general solution for the evolution of the metallicity for an accreting-box model of star formation is given by Eq. 5.57:

u dL
=p [1 -Ce™ - e'“j e" —Og[Mg] dlu]

(] du
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For our model, the change in gas mass is given by a fraction q of the accreted mass, which is equal to the change in the total
mass: 6M, = g 6M,. Defining a parameter u such that éu = 6M,/Mg, we have:

6Mg = q Mg 6u
Mg = Mgo e

Plugging this expression into our formula for Z, we have:

u dl(Log[Mgo]+qu) u
Z=p 1—Ce'“—e'“J-e“ du =p(1—Ce'“—qe'“Je“d1u)

0 du 0
= p(l-Ce¥-ge"(e'-1)) =p(l1-Ce’-q(l-e™))

If we associate My, with the initial gas mass then u=0 initially. As the initial metallicity is zero, we must have Z(u=0)=0, so C=1
and

Z=p(l-q) (1-e

Mg = (1-q) M, = (1-q) Mg éu = (1 -q) Mg 2" 6u

l-q
Mg [u] = _MgO (equ_l)
q
l-q
Mg [uz] = —— Mgo (e¥™ - 1)
q
Mg [uo] = Mgo ™

1-q up
M [u,] g Mo (e%T-1)

Mg [uo] Mgo @™

M, 1-
s[u1] - q (eqln _ 1) e~

Mg [uo] q

Locally, there is very little ongoing star formation, so we can approximate M,[u] ~ constant and take u; = ug

M l-q 1-
= (% -1) e 9% = = (1-e9Y)
My q q

In the solar neighborhood, the mass of stars dominates over the gas mass, so we should expect My >>M,. As1—e 7" <1 for all

positive q and u, this implies that lq;q >> 1 and hence that g << 1 in the solar neighborhood.
c)
For uy >> 1, the metallicity is approximately

Zo=p(l-q) (1-e™) =p (1-q)
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The ratio of metallicities at 1y and u; is then

21 p(l-q@ (1-e™)

—_ =l-e™
Zo p(1-q)

Z,
e™=1- —

Zo

Hence we have an expression for #; in the limit of large up:
Z;
u; = —Log[l - —]
Zo

Thus in the limit of Z; << Z, we have

2 2
u1=—Log[1—— x —<<1
Zy 2y

We can now rewrite our expression for the gas/star mass ratio at times 1 and 0, given u; << 1:

Mg [u;] l-q l-q

= (e -1)e ™ x —— (l+qu;-1) e = (1-q) u; e’ %

Mg[uo] q q

Replacing u; with the expression above, and noting that q<<1 in galaxies like our own, we have:

M, [u1]

Z,
— = —Log[l— —] e 1%
Mg [uo] Zy
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3)
S[R] = 3o e /R
V[R] =200km /s
0=0.75

The dispersion relation of waves in a fluid disk is given by

w=x2-27Gx |k|+vszk2

Oscillatory in the disk will be stable if w is real, so for the disk to be unstable we must have

x2-27Gx2 |k| +vs2k?2 <0
We can solve this equation as a quadratic in the wave number k:

Solve[x? - 2 7 GZAbs[k] + v’ k? == 0, k]
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We can rewrite these solutions by taking the Toomre parameter Q = 7:2:2:
2
K Vg
GnrZ 4G n?x2-x%v2 1= 1_(an) 1+4/1-0?
V: v§/G7rZ‘. vi/GnZ‘.

We can evaluate the two critical values of k between which the disk is unstable to oscillations, noting that our disk has Q=0.75,

S[Ro] = Zo e ®o/Re, and taking a typical sound speed of 10 km/s:
£ 5 (2.6 10° My, / kpe?) e (Bkee)/ (3-5kpe)

2.64424 x 107 Mgy
2=

2

The critical wavenumbers for instability are then:

1+4/1-02
k> ———em™* /. {@50.75, ve > 10°, 6 > 6.67 10°%, £ > 2.64 10" Mgy, / kpc?} /.
vi/(Gn‘Z)

{Mgun » 1.99 10°%, kpc - 3.086 10!}

1.15595x 1072 (1+£0.661438)
k >

cm

Hence the disk will be unstable to wavenumbers in the range:

1.21 5.93
< | k| <

kpc kpc

or

1.06 kpc < A < 5.19 kpc

As stable perturbations oscillate as A oc €“?, unstable perturbations (with imaginary values of w) will grow as A « el“!’, where
|w|= iw forimaginary w, and hence perturbations will grow on a timescale 1/w. Thus the timescale of the growth is (for a
typical wavenumber of ~4/kpc):

K>QnGZ/ves /. {@-0.75, vg 5 10°, 6> 6.67 10°%, = > 2.64 10" Mgy, / kpc?} /.
{Meun » 1.99 10°%, kpc - 3.086 10!}

8.66966 x 1071°
K> —MmMmMmMM—
S
w > (K*-276% k+v’k?) s7? /. {x>8.67%"-16, vs » 10°, G > 6.67 10°%,
% 5 2.64 10" Mgy, / kpe?, k > 4kpe™} /. {Mgyn » 1.99 10*, kpc > 3.086 10%'}

5.64881 x 1073!

SZ
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Tgroutn > (-0?) 7?5 /. {0 > -5.65+7-31, s » (3.15107) " yr}
Tgrowth > 4.22343 x 107 yr

Thus the disk instabilities would grow exponentially on a timescale of tens of millions of years.
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