Astr 511: Galactic Astronomy

Winter Quarter 2009, University of Washington, Željko Ivezić

Lecture 6:
Basic Properties of the Milky Way

Outline

- Spatial distribution of stars: disk, halo, bulge
- Stellar kinematics: rotation vs. random motions
- Interstellar medium: gas and dust
- Stellar counts: simple analysis

Good sites:

http://seds.Ipl.arizona.edu/messier/more/mw.html
http://www.space.com/milkyway

Introduction

- Top left: 30° by 10° (optical) view towards the Galactic center (from Axel Mellinger)
- Middle left: The all-sky view by the Infrared Astronomical Satellite
- Bottom left: a spiral galaxy (NGC 7331) similar to the Milky Way
- Conclusion: the density of stars on the sky varies greatly because we are observing from inside a disk of stars
- We live in a a spiral galaxy the same conclusion supported by the motions of stars and the presence of abundant interstellar medium (more later)

- The table on the previous page is wrong: most recent data clearly show that halo has rich substructure
- Top left: the counts of SDSS stars colorcoded by distance (red: $\sim 10 \mathrm{kpc}$, blue: several kpc) from Belokurov et al. (2007)
- Bottom left: the distribution of SDSS RR Lyrae stars and 2MASS red giants (Ivezić et al. 2003)

Kinematics

- Stars move in a gravitational potential (more in L13)
- Two types of motion: disk stars rotate around the center, while halo stars are on randomly distributed elliptical orbits (more in L11)
- The motion of stars was set during the formation period
- The details are governed by the laws of physics: conservation of energy and conservation of angular momentum!
- As the cloud collapses, its rotation speed must increase. As it spins faster, it must flatten.

Black Hole in the Galactic Center

- Stars move in a gravitational potential: a large mass (a few $10^{6} M_{\odot}$) confined to small space (0.1-0.2 AU) is required to explain about ~ 30 observed orbits
- Two teams: UCLA team led by Andrea Ghez, and European team led by Reinhard Genzel

NACO May 2002

S2 Orbit around SgrA*

Revised Spiral Arms

- The stellar bar was discovered in 1990s based on IRAS data
- It was believed that the Galaxy has four spiral arms: the Scutum-Centaurus, Perseus, Sagittarius and Norma
- The stellar counts from Spitzer galactic plane survey (Benjamin et al. 2008) strongly suggest that there are only two major arms, the Scutum-Centaurus and Perseus arms, as is common for barred galaxies

M81 - Spiral Galaxy (Type Sb)

Image Size $=14 \times 14$ arcmin
Visual Magnitude $=6$

radio continuum (2.5 GHz)

mid-infrared

optical

Stars form from gas in galaxies

"Interstellar Medium" = "ISM"

- Hot ionized Gas
- Neutral Atomic Gas
- Cold Molecular Gas
- Dust

What these phases are called:
"HII" = "H two"

- Hot ionized Gas
- Neutral Atomic Gas
"HI" = "H one"

Cold Molecular Gas
Dust

" H_{2} "

"Dust"

Nomenclature: "ElementI" = unionized Element
"ElementII" = singly ionized Element
"ElementIII" = doubly ionized Element...etc

What fraction is in each phase?

- Hot ionized Gas

Neutral Atomic Gas ~65\%

- Cold Molecular Gas < ~20\%
- Dust

$$
<15 \%
$$

- Neutral Atomic Gas

Low

(<0.5 atoms $/ \mathrm{cm}^{3}$)

Medium

 Neutral Atomic Gas (1-10 atoms/cm³)- Dust

- Cold Molecular Gas
 Hot ionized Gas

Very High (solid)

High
($10^{2}-10^{5}$ atoms $/ \mathrm{cm}^{3}$)

Hot ($>10^{4}-10^{7} \mathrm{~K}$)

- Hot ionized Gas
- Neutral Atomic Gas

Medium
($100-10^{4} \mathrm{~K}$)

- Cold Molecular Gas
- Dust

Medium-cold (<100K)

H α emission line (6563 \AA) X-Rays (if $\mathrm{T}>10^{6} \mathrm{~K}$)

- Hot ionized Gas
- Neutral Atomic Gas
- Cold Molecular Gas
- Dust

Thermal (Black-body) radiation at far-infrared wavelengths

21 cm emission line
(hyperfine splitting of H ground state)

CO rotational emission line

 (mm wavelengths)
Distributed How?

Halos of Galaxies

Galaxy

 Midplane, out to large radii beyond stars- Hot ionized Gas
- Neutral Atomic Gas
- Cold Molecular Gas
- Dust

Tracks the distribution of gas

Galaxy Midplane, concentrated in spiral arms

How are the three phases of gas inter-related?

Molecular gas is clumpy on small

 scales.
(View of the outskirts, away from/be center)

"Molecular Clouds"

This is why stars form in clusters!

The amount of dust can be measured using light that has been reprocessed into the infrared.

UV \& optical light is absorbed by dust...
...which heats up to 10100 K and radiates like a greybody at 10-300 $\mu \mathrm{m}$

Dust plays many important roles in galaxies

1. Extinction/Attenuation
2. Reddening \qquad
3. Reprocessing UV/optical light into the infrared
4. Scatters light.
5. Locks up metals

Ionized gas.

Nebula

- Hot young O \& B stars heat the surrounding gas, ionizing it.

$\underset{\text { Molecular }}{\underset{\mathrm{H}}{\mathrm{H}}} \rightarrow \underset{\text { Ionized } \mathrm{H}}{\mathrm{HII}_{k}}$

Star formation transforms a moleculàr cloud into an

"HII Region"

Optical Surveys

- Hipparcos: 3,000 stars visible by naked eye
- and many others...
- Palomar Observatory Sky Survey: (first 1950-57, second 1985-1999) photographic, nearly all-sky, two bands, $\mathrm{m}<20.5$, astrometric accuracy ~ 0.5 arcsec, photometric accuracy 0.20.4 mag (both very non-Gaussian), USNO-B catalog: 10^{9} sources
- SDSS: digital, $1 / 4$ sky, 5 bands, $\mathrm{m}<22.5$, astrometric accuracy <0.1 arcsec absolute, ~ 0.02 arcsec relative, photometric accuracy 0.02 mag (both nearly Gaussian), several 10^{8} sources

Stellar Counts

There is a lot of information about the Milky Way structure (and stellar initial mass function, and stellar evolution) in SDSS imaging data.

9 epochs, unresolved, $n=216830$, psf mags, area $=60 \mathrm{deg}^{2}$

Stellar Counts

There is a lot of information about the Milky Way structure (and stellar initial mass function, and stellar evolution) in SDSS imaging data.

How can we extract and interpret this information? What is the meaning of local maxima in the differential counts for some (but not all) color cuts?

Computing Differential Stellar Counts $n(m)$

1. $n(m)=d N / d m=d N / d V d V / d m$, $d N / d V=\rho(l, b, D)(\rho$ constrains Galactic Model $)$
2. For a pencil beam: $d V=\Delta \Omega D^{2} d D$
3. $D=10 \mathrm{pc} 10^{0.2(m-M)}, d D / d m=0.2 \ln (10) D(m)$
4. $n(m)=\rho(l, b, m) 0.2 \Delta \Omega \ln (10)(10 p c)^{3} 10^{-0.6 M} 10^{0.6 m}$

$$
n(m) \propto \rho(l, b, m) 10^{0.6 m}
$$

Examples for $n(m) \propto \rho(l, b, m) 10^{0.6 m}$

- Power-Iaw: $\rho(l, b, D) \propto D^{-n}$

$$
n(m) \propto 10^{k m}, k=0.6-0.2 n
$$

- Euclidian counts $(\mathrm{n}=0): n(m) \propto 10^{0.6} m$,
- Halo counts $(\mathrm{n}=3): n(m)=$ const.
- Exponential disk: $\rho(l, b, D) \propto e^{-D / H}$ at a distance $D=k H, n(m)$ has a local slope corresponding to a power-law with $n=k$. Hence, for $D=3 H$, the differential counts for exponential density distribution have a local maximum!

9 epochs, unresolved, $n=216830$, psf mags, area $=60 \mathrm{deg}^{2}$

What are SDSS counts telling us?

- For $g-r \sim 0.5$, maximum for $n(m)$ at $r=17$ $g-r \sim 0.5$ implies $g-i \sim 0.8$ and $M_{r} \sim 5.7: H^{\prime} \sim 1800$ pc
- For $r-i \sim 1.5$, maximum for $n(m)$ at $r=21.5$ $r-i \sim 1.5$ implies $g-i \sim 2.9$ and $M_{r} \sim 12: H^{\prime} \sim 800$ pc
- $H^{\prime}=H / \sin b \sim 2 H$, in agreement with expectations for thin ($H \sim 300 \mathrm{pc}$) and thick ($H \sim 1.0 \mathrm{kpc}$) disks.
- With SDSS we can do better than with this standard approach because the vast majority ($\sim 98-99 \%$) of detected stars are on the main sequence: next time

