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Abstract. As part of a global analysis of deep star counts to
constrain scenarii of galaxy formation and evolution, we in-
vestigate possible links between the galactic spheroid and the
dark matter halo. A wide set of deep star counts at high and
intermediate galactic latitudes is used to determine the large
scale density law of the spheroid. Assuming a power density
law, the exponent, flattening, local density and IMF slope of
this population are estimated. The estimation is checked for ro-
bustness against contamination of star counts by the thick disc
population. Contamination effects are derived from a model of
population synthesis under a broad variety of thick disc pa-
rameters. The parameter fit is based on a maximum likelihood
criterion. The best fit spheroid density law has a flattening of
0.76, a power index of 2.44. There is a significant degeneracy
between these two parameters. The data are also compatible
with a slightly less flattened spheroid (c/a = 0.85), in combi-
nation with a larger power index (2.75). A flatter spheroid (c/a
= 0.6) with a power index of 2 is not excluded either. We also
constrain the spheroid IMF slopeα to be 1.9± 0.2, leading to
a local density of 1.64 10−4 stars pc−3 and a mass density of
4.15 10−5 M�pc−3. With this slope the expected mass density
of brown dwarfs in the halo makes a negligible part of the dark
matter halo, as already estimated from microlensing surveys.

So, as star count data progresses in depth and extent, the
picture of the spheroid star population that comes out points to
a shape quite compatible with what we know about the distri-
bution of baryonic dark matter if it is made of stellar remnants,
suggesting a common dynamical origin.
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1. Introduction

This paper is part of a global analysis of star counts devel-
oped to constrain consistently scenarii of galaxy formation and
evolution.The central tool of this approach is the “Besanc¸on”
model of population synthesis. This model is gradually tuned
to fit an increasing number of observational constraints while
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keeping compatibility with previous fits and theoretical pre-
scriptions. In the present paper we address the problem of the
halo (dark or visible) by trying to compare the properties of
the spheroid population (the visible halo) with the dark mat-
ter halo, as traced by microlensing at high galactic latitudes
and by the rotation curve. If the dark matter is made at least
partly of stellar remnants, as shown by recent statistics of
microlensing at high galactic latitudes (Aubourg et al., 1993;
Alcock et al., 1997; Alcock et al., 1998), the density trend of
this matter should be close to a power law with index of 2 (as
expected from a flat rotation curve). It is natural to think of a
similar shape for the stellar spheroid.

Constraints on the overall shape of the dark halo are poor.
Cosmological simulations of halo formation generally predict
that halos are flattened by about c/a∼ 0.7 (Rix, 1996). But the
axis ratio depends on how much the halo matter is dissipative,
the more dissipative, the flatter the halo. Direct determinations
of the dark matter distribution in polar ring galaxies show flat-
tened halos with c/a∼ 0.5 (Sackett et al., 1994; Rix, 1996).

Concerning the spheroid population, most previous analyses
suggest rather steep density slopes with power indices between
3.0 and 3.5. However, these analyses are based on rather small
samples of well identified tracers. The estimated flattening also
cover a wide range between 0.6 to 1.0:

The distribution of galactic globular clusters appears to be
well fitted by a power law density with indexn ∼ 3.5 and
flattening of 1 (Harris, 1976; Zinn, 1985). Hawkins RR Lyrae
observations (1984) showedn = 3.1 ± 0.2 with a flattening of
0.9. Saha (1985), using a spherically symmetric model, found
n ∼ 3 out to 25 kpc but then the RR Lyrae density falls off more
rapidly beyond 25 kpc. Another study of RR Lyrae by Wetterer
(1996) showed that a spherically symmetric model yieldsn ∼ 3
whereas an ellipsoidal distribution yieldsn ∼ 3.5. Sluis (1998)
counted blue horizontal branch (BHB) stars and RR Lyrae and
foundc/a ∼ 0.5 andn = 3.2±0.3. Still from BHB star counts,
Sommer-Larsen (1987) derivedc/a ∼ 0.8 andn ∼ 3 up to
40 kpc, Preston (1991) found thatc/a increases from 0.5 to 1
up to 20 kpc withn = 3.5. Soubiran (1993) showed thatn =
3.5 ± 0.5 is compatible with the kinematical behavior of a star
sample near the north galactic pole. K dwarf counts with HST
yieldc/a = 0.8±0.1 andn = 3.06±0.22 (Gould et al., 1998).
All of these studies were based on a few hundred objects at most.
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In order to find new constraints on the spheroid density law,
we undertook a photometric and astrometric sample survey in
various galactic directions. We complemented these data with
existing deep photometric star counts in several high and inter-
mediate latitude fields. Most such counts contain large numbers
of halo dwarfs, but they cannot be distinguished from thick disc
dwarfs by their colours but at faint magnitudes. Since no large
optical surveys were available at magnitude fainter than 20, we
used heterogeneous data coming from various studies (often of
extragalactic aim) in various photometric systems.

The population synthesis model used here permits to per-
form a global analysis of these heterogeneous data, since ob-
servational data can be simulated in each field with the true
observational conditions (photometric system, errors and selec-
tion effects). The synthetic approach allows also to estimate the
biases and expected contaminations by other populations.

In Sect. 2 we describe the model of population synthesis
and external constraints on the spheroid population. In Sect. 3
we describe the data sets and the comparison method. In Sect. 4
we discuss the results and their implications for the dark matter
halo.

2. The model of population synthesis

We have used a revised version of the Besanc¸on model of popu-
lation synthesis. Previous versions were described in Bienaymé
et al. (1987a; 1987b) and Haywood et al. (1997b).

The model is based on a semi-empirical approach, where
physical constraints and current knowledge of the formation
and evolution scenario of the Galaxy are used as a first ap-
proximation for the population synthesis. The model involves 4
populations (disc, thick disc, halo and bulge) each deserving a
specific treatment. The bulge population which is irrelevant for
this spheroid analysis will be described elsewhere.

2.1. The disc population

A standard evolution model is used to produce the disc popula-
tion, based on a set of usual parameters: an initial mass function
(IMF), a star formation rate (SFR), a set of evolutionary tracks
(see Haywood et al., 1997 and references therein). The disc
population is assumed to evolve during 10 Gyr. A set of IMF
slopes and SFR’s are tentatively assumed and tested against star
counts. The tuning of disc parameters against relevant observa-
tional data was described in Haywood et al. (1997a; 1997b).

The model fixes the distribution of stars in the space of intrin-
sic parameters: effective temperature, gravity, absolute magni-
tude, mass and age. These parameters are converted into colours
in various systems through stellar atmosphere models corrected
to fit empirical data (Lejeune et al., 1997; Lejeune et al., 1998).
While some errors still remain in the resulting colours for some
spectral types, the overall agreement is good in the major part
of the HR diagram.

Since the Haywood et al. model was based on evolutionary
tracks at solar metallicities, inverse blanketing corrections are
introduced to give to the disc a metallicity distribution in agree-

ment with Twarog (1980) age/metallicity distribution (mean and
dispersion about the mean).

The model returns the present-day distribution of stars as a
function of intrinsic parameters in a unit volume column cen-
tered at the sun position. Since the evolution model does not
account for orbital evolution, stars are redistributed in the ref-
erence volume over the z axis. The key for redistributing stars
along the z-axis is age: an empirical relation associates z veloc-
ity dispersions to ages. Then the Boltzmann equation is used
to convert z velocity distributions into z density. The model is
dynamically self-consistent in the sense that the potential used
in the Boltzmann equation is the one generated by the total
mass distribution of stellar populations. The self consistency is
established iteratively. We slice the disc populations into seven
isothermal populations of different ages, from 0 to 10 Gyr. Each
sub-population (except the youngest one, which cannot be con-
sidered as relaxed) has its velocity dispersion imposed by the
age/velocity dispersion relation. We then deduce the scale height
of each sub-population using the Boltzmann equation. The over-
all scheme is described in Bienaymé et al. (1987a).

Resulting density laws are used to correct the evolution
model distribution in and off the plane, then to compute the
stellar densities all over the Galaxy.

2.2. The thick disc population

A detailed analysis of the thick disc population from pho-
tometric and astrometric star counts has been given else-
where (Ojha et al., 1994a; Ojha et al., 1994b; Ojha et al., 1996;
Robin et al., 1996; Ojha et al., 1999). The kinematics, metallic-
ity, and density law were measured allowing us to constrain the
origin for this population. In this series of papers, evidence was
given that the majority of thick disc stars should originate from
a merging event at the beginning of the life of the thin disc, after
the first collapse. One or several satellite galaxies have heated
the thin disc, then the gas re-collapsed and reformed a new thin
disc (Robin et al., 1996).

In the population synthesis process, the thick disc popula-
tion is modeled as originating from a single epoch of star forma-
tion. We use Bergbusch & Vandenberg (1992) oxygen enhanced
evolutionary tracks. No strong constraint exists on the thick disc
age until now. We assume an age of 11 Gyr, which is slightly
older than the disc and younger than the halo. The initial mass
function is modeled by a simple power law with a slope about
α = 1–2, referring to the notationφ(m) ∝ m−α.

The thick disc metallicity can be chosen between -0.4 and
-1.5 dex in the simulations. The standard value of -0.7 dex is usu-
ally adopted, following in situ spectroscopic determination from
Gilmore et al. (1995) and photometric star count determinations
(Robin et al., 1996; Buser et al., 1999). The low metallicity tail
of the thick disc seems to represent a weak contribution to gen-
eral star counts (Morrison, 1993b). It was neglected here. An
internal metallicity dispersion among the thick disc population
is allowed. The standard value for this dispersion is 0.25 dex. No
evidence has been found for a significant metallicity gradient in
the thick disc population (Robin et al., 1996).
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Fig. 1a and b. Luminosity function of the stellar halo. (Gizis & Reid, 1999): diamonds; (Bahcall & Casertano, 1986): squares;
(Dahn et al., 1995): plus, (Morrison, 1993a): cross.a solid line: modeled luminosity function with an IMF slope (α) of 2.0;the dotted lines
give the same luminosity function renormalized by a factor 0.75 or 1.25.b luminosity functions asa function of IMF slope (as indicated in the
graph).

The thick disc density law is assumed to be a truncated ex-
ponential: at large distances the law is exponential. At short
distances it is a parabola. This formula ensures the continuity
and derivability of the density law (contrarily to a true expo-
nential) and eases the computation of the potential. The scale
height of the exponential can vary between 600 and 2600 pc.
The standard value, 760 pc, has been obtained from star count
fitting in various directions (Robin et al., 1996). Nevertheless,
it can be shown that star counts when restricted to a small num-
ber of galactic directions and a small magnitude range do not
give a strong constraint on the scale height, but rather on the
parameter: (local density)×(scale height)2. At present there is
no accurate determination of the thick disc density in the solar
neighbourhood, independently from the scale height. But rea-
sonable values range between 700 to 1200 pc for the scale height
and 1 to 4% for the local density relative to the thin disc.

2.3. The spheroid

We assume a homogeneous population of spheroid stars with
a short period of star formation. We thus use the Bergbusch
& Vandenberg (1992) oxygen enhanced models, assuming an
age of roughly 14 Gyr (until more constraints on the age are
available), a mean metallicity of -1.7 dex and a dispersion of
0.25 about this value. No galactocentric gradient is assumed.
The IMF has to be constrained either from globular clusters (if
they are representative of the spheroid population) or from deep
star counts. This point is discussed in Sect. 3.

The density of spheroid stars is modeled by a power law:

ρ(R, z) = ρ0 × (R2 +
z2

ε2
)n/2

whereρ0 is the local density,n is the power law index andε is
the flattening.

The local density can be constrained by local measurements
of high velocity stars, or by remote counts of giants (spectro-

scopically selected) or dwarfs (photometrically selected). The
local density cannot be determined independently from the other
density parameters with our limited number of data sets. Thus
we have used independent constraints from the literature on the
local spheroid density.

2.4. The local spheroid density

The local stellar spheroid density,ρ0, is bounded by observa-
tional data on halo dwarfs and giants. Fig. 1 shows the lumi-
nosity function obtained by different authors. We only selected
recent results obtained in good conditions from sufficiently large
samples. Bahcall & Casertano (1986) and Gizis & Reid (1999)
derived their values from high proper motion dwarf samples.
Dahn et al. (1995) determined accurate parallaxes for local late-
type subdwarfs and deduced the local luminosity function of
halo stars in the absolute visual magnitude range 9 to 14. These
three results are biased by the kinematic selection. They took
the bias correction into account but this correction is model de-
pendent and introduces an unknown uncertainty into the result.
We expect that the differences between the three measurements
rely upon this correction. On the giant side, Morrison (1993a)
used a non kinematically-biased sample of halo giants, selected
from their metallicity to estimate the spheroid local density. In
Fig. 1a we show the luminosity function from Bergbusch & Van-
denberg (1992) for a population of 14 Gyr with a metallicity of
-1.75 and an IMF slopeα of 2. If we let the local halo den-
sity vary from a factor of 0.75 to 1.25 relative to this reference
model (dotted lines in Fig. 1a), we get a good agreement with
the specified observations given their uncertainties. In the next
section we allow the local density to vary within these limits.

3. Data sets and fitting methods

Obtaining good constraints on the spheroid density law requires
a good photometric accuracy. This generally depends on using
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Table 1.Deep photometric surveys used in our analysis. The magnitude and colour range used to select the halo stars are given.

Reference Field Area Bands Magnitude Colour
coordinates (deg2) range range

Our program North Galactic Pole 0.158 V,I V=20,24 0,1.6
l=150o, b=+60o 0.051 V,I V=20,22 -0.4,1.2

DMS l=129o, b=-63o 0.144 V,R V=20,22 0,0.6
l=248o, b=+47o 0.079 V,R V=20,22 0,0.6
l=337o, b=+57o 0.156 V,R V=20,22 0,0.6
l=77o, b=+35o 0.153 V,R V=20,22 0,0.6
l=52o, b=-39o 0.149 V,R V=20,22 0,0.6
l=68o, b=-51o 0.149 V,R V=20,22 0,0.6

Koo & Kron (1982) North Galactic Pole 0.097 J,F J=20,22 -0.4,1.0
l=111o, b=-46o 0.299 J,F J=20,22 -0.25,1.0

Reid & Majewski (193) North Galactic Pole 0.300 V,B V=20,22 0,0.8
CFRS l=177.4o, b=-48.3o 0.0105 V,I I=20,22 -0.4,1.4

l=205o, b=52o 0.0033 V,I I=20,22 -0.4,1.4
l=96.3o, b=59.9o 0.00952 V,I I=20,22 -0.4,1.4
l=64o, b=-44.4o 0.0062 V,I I=20,22 -0.4,1.4

CCD detectors on large telescopes, on fields as wide as possible
to cover large samples, and a large range of galactocentric dis-
tances. This can be obtained with a number of data sets at various
galactic latitudes and longitudes. We have collected such data
sets from the literature. Most have been made for extragalactic
purposes.

3.1. Available data

The main data characteristics are summarized in Table 1. The
photometric systems are close to the Johnson-Cousins system.
Spheroid star selection was based on their magnitude and colour
(either B-V, V-R, or V-I, depending on the available observa-
tions), in order to avoid presence of contamination by other
populations. Aiming at model independent results, the model
was used essentially to select colour and magnitude ranges and
fields where the contamination by thick disc stars remains negli-
gible under any reasonable thick disc hypothesis. For this reason
all data brighter than magnitude 20 at intermediate and low lat-
itudes were excluded. A small number of disc white dwarfs is
also present in the selection but the proportion is at most a few
percent and has no consequence on the result.

Our survey program include at the moment two fields, one
towards the north galactic pole, another at intermediate latitude
(l=150,b=60). The NGP field is the deepest up to now: it is com-
plete and free from galaxy contamination up to magnitude 24. A
full description of these data sets will be given in a forthcoming
paper.

The other selected data sets are the six fields of the
DMS survey (Hall et al., 1996; Osmer et al., 1998) observed
in V and R bands at medium latitude, 4 fields from the
Canada-France Redshift survey (CFRS, (Lilly et al., 1995;
Le Fevre et al., 1995; Hammer et al., 1995)) dedicated to
galaxy counts, two fields from the Koo & Kron investigation
for quasars (Koo & Kron, 1982; Koo et al., 1986), another
field from Reid & Majewski near the north galactic pole
(Reid & Majewski, 1993).
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Fig. 2. Line of sight projected on (R,z) plane. The segments limits
indicate the distance distribution for 90% of the halo stars. Solid lines
indicate the Deep Multicolor Survey fields, dotted lines the Canada-
France Redshift Survey fields, long dashed lines the field from Koo
& Kron (1982) and the dot-dashed lines the fields from our program,
as well as other North Galactic pole fields from Koo et al. (1986) and
Reid et al. (1993).

The absolute visual magnitude of halo stars in the selected
samples ranges between 3 and 8, except our north galactic pole
field which reaches MV ∼ 11. All these fields taken together
cover a large part of the (R,z) plane, as can be seen in Fig. 2
where the distributions in R and z of 90% of halo stars in each
field of view are drawn.

3.2. Analysis method

Population synthesis simulations have been computed in every
observed field using photometric errors as close as possible to
the true observational errors, generally with photometric errors
growing as a function of the magnitude and assumed to be Gaus-
sian. Monte Carlo simulations are done in a solid angle much
larger than the data in order to minimize the Poisson noise.
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Fig. 3. Likelihood as a function of power law in-
dex, flattening and local density: On the left: iso-
likelihood contours at 1, 2 and 3 sigmas in the plane
(power law index, flattening) of the spheroid popu-
lation. On the right, likelihood as a function of the
power law index, for the best flattening. Lines are
coded by the local density. Solid line: standard local
density as defined in Sect. 2.4; dotted line: 0.75×ρ0;
dashed: 0.50×ρ0, dotted-dashed: 1.25×ρ0

Then we compare the number of stars produced by the model
with the observations in the selected region of the plane (mag-
nitude, colour) and we compute the likelihood of the observed
data to be a realization of the model (following the method de-
scribed in Bienayḿe et al., 1987a, appendix C). The likelihood
has been computed for a set of models, varying the power law
index between 2.0 and 3.5, the flattening between 0.3 and 1.0,
the local density between 0.5 and 1.25 times the standard value
as defined in Sect. 2.4, and the spheroid IMF slopeα from 1.0
to 2.2.

The confidence limits of estimated parameters are deter-
mined by the likelihood level which can be reached by pure
random change of the sample: a series of simulated random
samples are produced using the set of model parameters. The
rms dispersion of the likelihood about the mean of this series
gives an estimate of the likelihood fluctuations due to the random
noise. It is then used to compute the confidence limit. Resulting
errors are not strictly speaking standard errors, they give only
an order of magnitude.

4. Results and discussion

4.1. Constraints on the spheroid density law

Fig. 3 gives the value of the likelihood as a function of the flat-
tening, power law index and local normalization. On the left,
iso-likelihood contours are drawn for four values of the local
normalization (0.5, 0.75, 1.0 and 1.25×ρ0). On the right, we
show the likelihood values as a function of the power law index
for the best fit value of the flattening.

Comparing the results of different local normalization we
conclude that the choice of the local normalization sensitively
displaces the best fit power law index and flattening, but their
likelihood are not similar. The best fit model is obtained either
with a local density of 0.75ρ0, a power law index of 2.44 and
an axis ratio of 0.76, or a local density of 0.5ρ0, a power law
index of 2.24 and an axis ratio of 0.86. The values obtained with
a standard local densityρ0 are slightly worse but stay within 1
sigma confidence level. They are a power law index of 2.62 and
an axis ratio of 0.70. The best fit local densities 0.5ρ0 and 0.75ρ0
agrees with the Bahcall & Casertano determination of the local
luminosity function as seen in Fig. 1, but conflict with Dahn et

al., which favors a local density of 1.25ρ0. However, in the
present study the statistics is dominated by stars with absolute
magnitudes in the range 3 to 8, a range poorly represented in the
Dahn et al. sample. Only deeper counts could give constraints
on the fainter part of the luminosity function.

It is worth having a look at the colour distributions as pre-
dicted by the best fit model compared with the observational
data. Figs. 4 and 5 show the colour distributions observed (dots)
and predicted (heavy solid line) by the best fit model (ε=0.76,
n=2.44, 0.75ρ0) in the selected magnitude interval in each tested
field. Superimposed we show the distribution of the spheroid
population alone as predicted by the model (light solid line). We
see here that some photometric systems are not closely matched
by the model, as seen by slight shifts between model and data
in some cases. But the way we have selected spheroid stars in
the blue peak of the distribution cannot introduce a bias even in
case of colour shifts.

4.2. Sensitivity to the IMF slope

Whatever the assumed IMF slope in the range 1–2.2, the maxi-
mum likelihood is obtained for the same density law parameters.
There is a slight likelihood variation related to the choice of the
IMF, but it is only due to the deepest magnitude bin towards the
pole.

A separate analysis of star counts deeper than 22 towards
the pole can help determine precisely the IMF slope. In this
magnitude range spheroid stars with absolute magnitude 10–11
contribute substantially to star counts, while their frequency is
sensitive to the IMF as can be seen on Fig. 1b. The analysis is
slightly different from the determination of the density law. In
this range of absolute magnitude the subdwarf sequence turns
redwards making the colour index a good luminosity indicator.
The V-I distribution is used as an additional constraint. A V-I
histogram is built with a bin 0.1 magnitude wide over the range
0 to 3. The density law is adopted from the above analysis, so the
free parameters are the halo and thick disc IMF slopes. Since
these two populations are quite well separated in the (V,V-I)
plane, the two IMF slope estimates are de-correlated. Table 2
gives the resulting slope estimates with their likelihood in the
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Fig. 4.Colour distributions of selected sam-
ples. Contributions of different magnitude
interval have been summed up for clarity.
Observations in different fields are shown
by dots. The ordinates give the true number
of observed stars in each colour bin. Heavy
solid lines are the predicted number of stars
by the model assuming a power law index of
2.44, a flattening of 0.76 and a local density
of 0.75×ρ0 for the spheroid. Thin lines show
the contribution of the spheroid alone.

Table 2. IMF slopes of the spheroid and thick disc populations de-
termined by the maximum likelihood technique for four models of
spheroid density laws

ρ0 n ε α Spheroid α Thick disc Likelihood

0.50 2.24 0.86 1.9 1.7 -79.1
0.75 2.44 0.76 1.9 1.7 -58.8
1.00 2.62 0.70 1.9 1.6 -55.9
1.25 2.76 0.66 1.8 1.6 -60.3

magnitude range 22–24 for the different spheroid density laws
determined previously.

Spheroid models with a local density 0.75ρ0 and 1.0ρ0
give the maximum likelihood, well in agreement with the previ-
ous result. However the model with 0.50ρ0 is noticeably worse.

Eventually, the resulting IMF slopes do not depend significantly
on the assumed density laws and the likelihood is well peaked
around the maximum indicating a robust determination. We con-
clude that the IMF of the halo, in the mass range [0.1, 0.8] is:

φ(m) ∝ m−1.9

while the IMF slope of the thick disc seems to be slightly smaller
and similar to the disc’s (Haywood, 1994). These values do not
account for binarity. Thus the true IMF should slightly steepen.
We leave the value uncorrected until more data are available on
the binary fraction among low mass spheroid stars.

This result is the first direct measurement of the mass func-
tion of field star spheroid with a good statistics, thanks to the
wide field of the CCD mosaic. Several previous determinations
used kinematically selected samples (see Sect. 2.4 for refer-
ences) or deep fields. But the latter were limited to narrow fields:



A.C. Robin et al.: The spheroid density law and initial mass function. I 109

Fig. 5. Same as Fig. 4 for other fields

the first attempt by Richer & Fahlman (1992) lead to a very steep
IMF slope ofα = 4.5 ± 1.2 which had given hope for a dark
matter halo of brown dwarfs. Later results have given shallower
slopes but the uncertainties were not significantly decreased.

Gould et al. (1998) analyzed a sample of 166 stars in 53
HST WFPC fields, making difficult the de-correlation between
structural parameters of the spheroid and its mass function. They
found a luminosity function down by a factor two from the
present one and deduced an IMF slope ofα = 0.75 (in our no-
tation). Their result relies upon the assumption that the spheroid
has a mean metallicity of -1.0, which looks too high considering
most direct measurement of its abundances. This high metallic-
ity induces an overestimate of the luminosity at a given colour,
hence of the distance, as well as an overestimate of the mass
relatively to a smaller assumed metallicity.

4.3. Variations of density law with galactocentric position

If we independently check the results obtained in inner fields
and in outer fields, we are able to search for solutions with
varying power law index and flattening over the galactic radius.
Contrarily to Preston et al. (1991) we find no evidence for vary-
ing power law index or flattening. However, a round spheroid
is ruled out by the inner field data as well as by fields at low
latitudes. Thus our results are compatible with a true power law
and a constant flattening all along the tested galactic radius.

When comparing data sets from different sources in close
galactic fields, discrepancies appear which are larger than ex-
pected on the basis of pure random noise. This may be due either
to data incompleteness, or to systematic errors in the photom-
etry (including mismatch of the standard photometric system),
or to true inhomogeneities in the spheroid distribution. Cur-
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Fig. 6. Colour distributions towards the
galactic pole in three magnitude intervals.
Dots: observational counts; heavy solid
lines: model distribution assuming a stan-
dard thick disc, light lines: model assuming
a doubled thick disc density. The contam-
ination of the blue peak by the thick disc
can reach 30% at magnitudes 18–20 but be-
comes negligible at fainter magnitudes.

Fig. 7. Observed colour distributions to-
wards the north galactic pole (magnitude
range 22–24) and SA68 Koo & Kron data
(magnitude range 20–22) compared with
model predictions with two thick disc mod-
els. On the left side, model B (local den-
sity of 3.9% of the thin disc, a scale height
of 1150 pc and an IMF slope ofα = 1),
On the right side, model C (local density of
0.5%, scale height 2 kpc, IMF slope 1.75).
Thin lines are the contribution of the ad-
justed spheroid (see text).

rently available data are not sufficient to discriminate between
these different causes. Homogeneous wide field surveys will
be necessary to clarify these aspects. The scope of the current
investigation is for this reason limited to large scale average
characteristics.

4.4. Contamination by other populations

The blue peak at these magnitudes may be contaminated by disc
white dwarfs or by thick disc main sequence stars. The former
are very few compared to the density of the halo. The contami-
nation by disc white dwarfs, as determined by the model, is at
most 5% in the magnitude range 22–24.

The contamination from the thick disc has been estimated
using our best fit thick disc model as adjusted on medium deep

star counts. The contamination can reach about 30% in the mag-
nitude range 18–20 but becomes negligible at magnitude larger
than 20 as seen in Fig. 6. Hence, we do not take into account
magnitudes lower than 20 in our study.

Had the thick disc contamination been underestimated, then
the contribution assigned to the halo in the blue peak would be
too large, resulting in a possible distortion of the density law.
In order to evaluate how this would affect our conclusions, we
have investigated different thick disc models which could fake
the halo contribution to the blue peak. Attempts were limited
to realistic thick discs roughly fitting the red peak. We have
selected two extreme thick disc parameters for which the con-
tamination to the blue peak becomes significant. A thick disc
with a local density of 3.9%, a scale height of 1150 pc and an
IMF slope of 1. (referred to as model B). A thick disc with a
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scale height of 2 kpc, a local density of 0.5% and an IMF slope
of 1.75. (model C). With such thick disc models, the process
of adjusting the spheroid density law parameters end up to tiny
local density of about 25% of the standard value and very small
power law index of the order of 1.5. Surprisingly, the fit is good
on star counts up to magnitude 22, showing that a large range
of parameters can reproduce a wide set of star counts. However
at magnitude 22–24, model B and C are unable to reproduce
the counts, as exemplified in Fig. 7, where at the top star counts
at the pole in the magnitude range 22–24 are overestimated in
the blue peak, and in the range 20–22 (bottom) the fit is still
acceptable.

So, the degeneracy between thick disc models and halo pa-
rameters holds only if star counts are not deep enough. Keeping
reasonable values for the thick disc parameters leads to a small
contamination with no risk of underestimation of the halo den-
sity. If the thick disc contribution is higher than expected from
standard models then we would overestimate the local halo den-
sity and power law index, strengthening our conclusion towards
a flat spheroid with a small power law index.

5. Conclusions

We have shown that, with the data available up to now, the
spheroid star distribution follows a power law with an index
smaller than previously thought. It is moderately flattened, as
already found by several investigations. The best fit power law
index is found 2.44 for a flattening of 0.76. We cannot exclude
a spheroid population having a power law as low as 2 and an
axis ratio of 0.5 at the 2 sigma level. Assuming a high exponent
of 3.5, as suggested by some globular cluster and RR Lyrae
data, model predictions deviate significantly from observations
in the external parts of the galaxy whatever reasonable flattening
is adopted.

The IMF slope of the spheroid is found to beα = 1.9±0.2,
value which gives a local density of 1.64 10−4 stars pc−3 and
a mass density of 4.15 10−5 M�pc−3 for the stellar halo, yet
this value ignores possible old white dwarfs. With this slope
the expected mass density of brown dwarfs in the halo makes
a negligible part of the dark matter halo, as already estimated
from microlensing surveys.

Recent searches for ancient halo white dwarfs have given
a hope to identify the microlensing events with such objects
(Ibata et al., 1999; Ibata et al., 2000; Hodgkin et al., 2000).
Ibata et al. (2000) conclude that old white dwarfs may constitute
a significant fraction of about 10% of the dark matter halo. In
the mean time, microlensing experiments have narrowed the
range of the estimated halo baryonic fraction to 20 to 50%
(Alcock et al., 2000). These two results are well in agreement
according to the uncertainties.

So, as star count data progresses in depth and extent, the
picture of the spheroid star population that comes out points
to characteristics quite compatible with what we know about
the distribution of baryonic dark matter if it is made of stellar
remnants, suggesting a common dynamical origin. The visible
spheroid and its heavy counterpart of dark remnants can make

a significant but not dominant part of the so-called dark matter
halo.
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A&A 305, 125

Sackett P.D., Rix H., Jarvis B.J., Freeman K.C., 1994, ApJ 436, 629
Saha A., 1985, ApJ 289, 310

Sluis A.P.N., Arnold R.A., 1998, MNRAS 297, 732
Sommer-Larsen J., Christensen P.R., 1987, The Messenger 47, 13
Soubiran C., 1993, A&A 274, 181
Twarog B., 1980, ApJS 44, 1
Wetterer C.J., McGraw J.T., 1996, AJ 112, 1046
Zinn R., 1985, ApJ 293, 424


	Introduction
	The model of population synthesis
	The disc population
	The thick disc population
	The spheroid
	The local spheroid density

	Data sets and fitting methods
	Available data
	Analysis method

	Results and discussion
	Constraints on the spheroid density law
	Sensitivity to the IMF slope
	Variations of density law with galactocentric position
	Contamination by other populations

	Conclusions

