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Galaxies Must Evolve

e Stars evolve: they are born from ISM, evolve, shed envelopes or
explode, enriching the ISM, more stars are born...

e Structure evolves: density fluctuations collapse and merge in a
hierarchical fashion

Galaxy Evolution

Conversion of gas into stars and v.v.,
feedback processes

Assembly of the mass STTILLLLL

DM dominated

Cannot be observed directly,
but may be inferred (*%)

Easy to model, mainly
dissipationless

This 1s what 1s observed, and
where energy is generated

Dissipative, and very hard to
model



Evolution Timescales and Evidence

Timescales for galactic evolution span wide range:
~ 100 Myr - galaxy free-fall and cooling time scales
10 -100 Myr - lifetimes of massive stars
10 -100 Myr - lifetime of the bright phase of a luminous
Active Galactic Nucleus (?) (%)
Few x 100 Myr - rotation period of spiral galaxy
~ Gyr - time required for two galaxies to merge
~ 10 Gyr - age of the Universe

Observational evidence for evolution is found in:
e Stellar populations in the Milky Way (e.g., metallicity as
a function of stellar age, etc.)
* Systematics of nearby galaxy properties
e Properties of distant galaxies seen at earlier epoch



Theoretical Tools and Approaches

1. Assembly of the mass: numerical modeling of structure
formation. Fairly well advanced, but it 1s hard to treat any
dissipative processes very accurately. Well constrained from
cosmology (LSS formation).

2. Evolution of stellar populations: based on stellar evolution
models, and fairly well understood. Lots of parameters: the
stellar initial mass function, star formation history, stellar
evolutionary tracks and spectra as functions of metallicity.
Poorly constrained a priori.

3. Hybrid schemes, ¢.g., “semi-analytical” models. Use both of
the above to assemble comprehensive models, but not
constrained very well.



Observational Tools and Approaches

 Deep imaging surveys and source counts, at wavelengths from
UV to FIR
— Sources are always selected in emission, and any given band has its
own selection effects and other peculiarities
— With enough bandpasses, one can estimate “photometric redshifts™,
essentially very low resolution spectroscopy; may be unreliable (*%)
— Measurements of clustering provide additional information

* Deep spectroscopic redshift surveys: redshifts are usually

obtained in the visible (**), regardless of how the sources are
selected

— As a bonus, one can also estimate current star formation rates and
rough chemical abundances from the spectra

e Diffuse extragalactic backgrounds: an integrated emission from
all sources, regardless of the flux or surface brightness limits
— Extremely hard to do
— No redshift information (*%)
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Colors of Stellar Populations:

Differences in Star Formation Histories

z ~ 0 galaxies, Djorgovski 1992
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SDSS, Blanton et al. 2002
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Stellar Population Synthesis Models

e We can synthesize predicted galaxy spectra as a function of time
by assuming the following:

— Star formation rate (as a function of time)
— Initial mass function
— Libraries of stellar spectra for stars of different masses and

metallicities and ages, etc.
— Stellar evolutionary tracks (isochrones)

* A simple stellar population (SSP) is the result of an instantaneous
burst of star formation

* We can model more complex star formation histories by adding
together multiple SSPs, parameterize star formation rate as a

function of time as:
— dM/dt ~ exp (-t/t) where t is the time since the start of star formation

and T 1s the star-formation time scale



Modeling Evolution of Stellar Pop’s

e Stellar evolution is relatively well understood both observationally and
theoretically; the key points to remember:
— Massive stars are very hot, blue, very luminous, and have very
short lives; they dominate the rest-frame UV light
— Thus we expect largest effects in the bluer parts of the spectrum
— But there are still some modest disagreements among the models

e Star formation histories are a key assumption:
— Ellipticals are best fit by a burst of early star formation followed by
“passive evolution” where they fade and get redder with time T ~ 1
Gyr or less
— Spirals are best fit by T ~ 3-10 Gyr — they stay bluer and don’t fade
as much
— Irregulars are best fit by constant star formation rates



What We Need

Stellar theory predicts the evolution or (stellar tracks) of stars of a
given mass. There 1s some variation among different theoretical

models (%)

Observations give us libraries of stellar spectra as a function of
age, mass, metallicity, etc.

We need the initial mass function (IMF) of stars

All of these are uncertain at very low metallicities and high stellar
masses

We have to assume some star formation rate (SFR) as a function
of time. Popular choices include a sharp burst, a constant SFR, or

an exponentially declining one:
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log(Luminosity [erg/s/Angstrom])

Predicted Spectral Evolution

for a simple stellar population (SSP):
a O-function burst with a fixed metallicity and IMF
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Observed Spectral Evolution

early-type galaxies in massive galaxy clusters (0.23 <z < 0.76)
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Semi-Analytical Models

Semi-analytical models
claim to match
observations using
prescriptive methods for
star formation and
morphological assembly

Warning: Star formation
is a complex, poorly
constrained phenomenon:
provides a weak test of the
theory (age of stars = age

of structures)
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Observing Galaxy Evolution

e [f redshifts are not available, we can do source counts as a
function of limiting flux or magnitude; and colors as a
function of magnitude (acting as a proxy for distance - not a
great approximation)

e But you really do need redshifts, to get a true evolution in
time, and disentangle the various evolution effects

* The field is split observationally:
— Unobscured star formation evolution: most of the energy
emerging in the rest-frame UV, observed in the visible/NIR
— Obscured star formation: energy from young stars
reprocessed by dust to emerge in FIR/sub-mm
— They have different limitations and selection effects



Source Counts: The Effect of Evolution

log N (per unit area
and unit flux or mag)

A

(at a fixed cosmology!)

Evolution

No evolution

Luminosity evolution
moves fainter sources (more
distant and more numerous) to brighter
fluxes, thus producing excess counts, since generally galaxies
were brighter in the past

Density evolution means that there was some galaxy merging, so there
were more fainter pieces in the past, thus also producing excess counts at
the faint end

In order to distinguish between the
two evolution mechanisms, redshifts
are necessary
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Log flux density (W m™ Hz™)

evolution models, and more in the
bluer bands

100 k4

The extrapolated total count is ~
1011 galaxies over the entire sky
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Galaxy Colors vs. Redshift

redshift
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Faint Galaxy Colors

We can use the synthesis o MR MMM
models to predict colors of
galaxies at high redshifts,
and then use color-color
diagrams to select objects 1s
some likely redshift range .
m T
This leads to an estimation
of photometric redshifts
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Examples of Spectral Energy Distributions Fits to Photometric Data
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Photometric Redshifts

Given enough bands, and
good photometry, one can do
reasonably well, but some
outliers will always happen

Still, this is a lot cheaper than
doing real spectroscopy...
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Presence of continuum breaks is an especially powerful in
photometrically selecting galaxies in some redshift range

Lyman break The Current Spectroscopic Sample
Received on earth, after \ =993 N 164 N—=946 \N=069

passing through IGM
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Deep Redshift Surveys

e To really understand

what 1s going on,

separate the effects of
luminosity and density
evolution, and break the c::a
degeneracy between
distance and intrinsic
luminosity at a given

flux, we need redshifts

To go beyond z > 1, we

have to go faint, e.g. to R
> 23 - 24 mag

26

xspectroscopic

o T .r'g‘ll'| 'r ‘ﬁ—'ﬁe m
Q ° .
g”g 's e ,i’f«q —
¢ .ﬁg ¢ ﬁ . ]
}:;Q.w;: 0 0 4 &= 8 m
oge‘ Y e »
et i
8.5 @
d
¥ av
L]
L J
.;.’
* ophotometric, HDF North
e photometric, HDF South

N -




A proven powerful
combination is to use deep |
HST imaging (e.g., HDF N
and S, HUDF, GOODS
field, etc.) and Keck or
other 6 to 10-m class :
telescope for spectroscopy. |

Various deep fields also
have multi- wavelength

data from Chandra, VLA,
Spitzer ...




Hubble Deep Field With Keck Redshifts
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GOODS Field Redshifts

The Team Keck Redshift Survey of the GOODS- North Field
(Wirth et al. 2004)

Spectroscopic redshifts in the ACS-GOODS region of the HDF-N
(Cowie et al. 2004)

VIMOS VLT Deep Survey: redshifts in the CDFS
(Le Fevre et al. 2004)
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Fic. 16. Pie diagrams showing the spatial distribution as a function of redshift for all galaxies with secure measurements in our survey
(a) Projected distance of each galaxy from the center of the GOODS-N field in the direction of Right Ascension vs. redshift. (b) Same, for
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Note the numerous walls correponding to peaks in the marginal distribution of redshifts seen in Fig. 03] Dotted lines indicate lines of
constant redshift. Cosmological parameters hg = 0.75 and gp = 0.5 are assumed in computing the spatial offsets



VVDS: redshift distribution of galaxies and
absolute magnitude — redshift distribution
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Modern deep redshift surveys reach ~ L, galaxies out to z ~ 1



Evolution of Galaxy Luminosity Function
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But at 1
higher
redshifts, 4
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Evolution of Galaxy Sizes

HST imaging suggests that galaxies were smaller in the past
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Evolution of the Merger Rate
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but conversion to mass assembly rate 1s not straightforward



Scaling Relations as Evolution Probes

By design, they are our sharpest probe of galaxy properties - and thus potentially of galaxy
evolution (note that the relations themselves may be evolving!)
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Evolution of the FP of Field Ellipticals

1.25 log(s) + 0.32 SB, — 9.062

—

0.75<z<1.0
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Gebhardt et al. 2004



Fundamental Plane Evolution

The data indicate a brightening of E’s at higher redshift, as reflected in their surface
brightness at a fixed r, and 0. The brightening rate is consistent with passive evolution

starting at a high redshift
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Scaling Relations as Evolution Probes

Studies of the FP in both clusters and field out to z > 1 indicate
that ellipticals were brighter in the past, but the data are
consistent with a model where they are formed at high redshifts
(z > 3, say) and evolve nearly passively since then

Data on galaxy colors and line strengths are also consistent
with that picture

There 1s a gradual rotation of the FP, in the sense that the lower
mass E’s are younger - galaxy downsizing again
Studies of the Tully-Fisher relation at high z’s are much less

conclusive: the TFR appears to be noisier in the past, and
spirals somewhat brighter, but the situation is not clear yet



Galaxy Evolution in Clusters

Generally, we may expect a systematic difference in galaxy evolution processes in very
different large-scale environments, mainly due to different dynamical effects.

The first of these was the
Butcher-Oemler effect:
the fraction of blue

galaxies in clusters
increases dramatically
at higher redshifts 8
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Color-magnltude dlagram for CL0939+4713,z ~0.41
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There 1s a systematic conversion of regular spirals into SO and E
galaxies in time, but at any fixed redshift, richer and denser
clusters have fewer spirals



Post-Starburst Galaxies

These blue galaxies in distant clusters are a mix of regular
star-forming spirals, some AGN, and a new type:

There is a significant population of post-starburst galaxies in
distant clusters (~20%), these have K+A (or E+A) spectrum,
showing both the features of a K-star (typical E galaxy
spectrum) plus the strong Balmer absorption lines of an A star

This would only be seen in a galaxy that was forming stars in
the recent past (<1.5 Gyr) but the star formation was truncated

This 1s probably related to the conversion of SO to S galaxies
(morphology density) and the Butcher-Oemler effect



Evolution of Spirals in Cluster Environment

e Possible scenario for spirals transforming into SO’s:

— Infalling spiral galaxies @ z~0.5

— Triggering star formation

— Starburst (emission-line galaxies)

— Gas 1s stripped by intracluster medium

— Post-starburst galaxies

— Tidal interactions heat disk

— Stars fade

— The products are SO’s at z~0

— Morphological segregation proceeds hierarchically, affecting
richer, denser clusters earlier. SO’s are only formed after
cluster virialization

e But there are SO’s also in group environments, so this 1s not the
only way to make them



Combined Visible-Infrared
. [Hubble & Spitzer)
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Visible [Hubble)

+ N

Infrared (Spitzer)

Distant Galaxy in the Hubble Ultra Deep Field

NASA, ESA / JPL-Caltech / B. Mobasher (STScl/ESA)

Spitzer Space Telescope * IRAC
Hubble Space Telescope * ACS « NICMOS

ssc2005-19a



Obscured Galaxy Populations

e We know that a lot of star formation locally 1s obscured by dust

e Sub-mm observations, e.g., at CSO or JCMT using SCUBA
instrument reveal a population of luminous obscured sources

Lockman




M82, a Prototypical Starburst Galaxy
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. The spectrum of M82, UV to sub-mm
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Sub-mm K-Corrections

L L] LN B I L] L L2 ] LI | l L
From blue to red: 24,
As dusty galaxies are 70, 110, 160, 200, 350 | 100
redshifted, the observed 450, 200, 850, 1100
. . . 2 -
bandpass climbs the Wien side ..., 1400 and 2100um ]
of their thermal emission E | 10
spectrum, resulting is a \ E
negative K-correction - so . \ \ .
distant obscured sources may 7 “ S .
: : , = ‘ \ 41
even get brighter at higher z’s, 7T ‘ 5
and easier to detect : ‘ i
E
- 0.1
j; 0.01
|

Redshift



Sub-mm Source Counts
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Optical IDs of SCUBA Sources

Given the poor angular resolution of
the current sub-mm telescopes,
optical IDs and thus redshifts for
many of these sources are highly
uncertain

Sometimes one can use radio IDs
from VLA as a step towards getting
the optical IDs and then the redshifts



Redshifts for Radio-Selected SCUBA Sources
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VLA positions for 70% of f(850um) > 5 mlJy (20% b/g)

Redshifts are typically z ~ 2 - 3 (as expected)
Many SCUBA sources seem to contain active nuclei
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The History of Star Formation
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This is often
called the “Madau
diagram”

These data and
models are not
corrected for
extinction



Cosmic Star Formatlon History
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From various luminosity densities converted ]

to star formation rates, we can construct a ‘v —0.5 - E

possible history of the comoving SFR E B FEE— - £ —F— 3

density s F@ - .

& o :

At face value it implies the universe was & ~1-9 F B
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Now pushing to z ~ 6 (and beyond?)

t (Gyr)

Use the color dropout technique to _ 10 54 3 =2 1 0.6
. : o . 2 28.5 - &
identify high-z galaxy candidates 9 - a ' Myyag < —19.7 :
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color bins give different redshift ':g ; = i 3 !
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Build-up of Stellar Mass Density

Co-moving stellar %9
mass density grew
rapidly from z ~ 6
(z.md probably .
higher) to z ~ 1, but
has not changed o
much since then
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The Cosmic Chemical Evolution

A schematic view: : . . .
infall of intergalactic material,

primordial H, He

cooling and collapse mixing of processed gases
with ISM

. mass loss due to PN
star formation . ‘
\}\ndsands,\l
nucleosynthesis in slars mass loss due to
galactic winds

Details of these processes are very messy and hard to model or simulate. So, simplified
(semi)analytical models and assumptions are often used, e.g., the “closed box” model, or
the “instanteneous recycling” approximation.



Galactic Winds

M82 (CXO): X-ray

Starburst can drive winds of enriched gas (e.g., from
supernova ejecta) out to the intergalactic medium. This gas
can then be accreted again by galaxies. In a disk galaxy, the
winds are generally bipolar outflows

MS82 (Subaru): Ha + optical

Numerical Simulation
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log p, (My yr™* Mpe™)

Ev

olution of the Metal Production
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Redshift

It must track the star
formation in galaxies

Connolly et al. (1997)



All Starlight in the Universe

e Any deep survey is limited in flux and surface brightness: some
fainter and/or more diffuse sources are likely missed; thus, our
source counts give us only a lower limit to the total energy emitted
by evolving galaxies

e An alternative approach is to measure infegrated diffuse
backgrounds, due to all sources
— This 1s really hard to do, for many reasons
— Redshifts are lost, but at least the energy census is complete

e The total energy in the diffuse extragalactic backgrounds from UV
to sub-mm 1s ~ 100 nW m-2 sr-! (£50% or so)
— This 1s distributed roughly equally between the UV/Opt (unobscured
SF) and FIR/sub-mm (obscured SF)
— A few percent of the total is contributed by AGN
— This 1s only a few percent of the CMB



Diffuse Optical and IR Backgrounds
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