The Radiation-Dominated Era

Ay 127 April 9, 2013

Outline

- 1. Radiation-Dominated Plasmas, Expansion of the Universe
- 2. Neutrino Decoupling
- 3. Synthesis of the Light Elements
- 4. Observations of D, He, Li

Radiation-Dominated Plasmas

Consider blackbody spectrum:

$$I_{v} = \frac{ghv^{3}}{c^{2}} \frac{1}{e^{hv/kT} \pm 1}$$

g = number of polarizations (2 for photons)- = bosons; + = fermions

• Energy density $u = \frac{4\pi}{c} \int_0^\infty I_v dv = \frac{\pi^2}{30\hbar^3 c^3} g_*(kT)^4$

 $g_* = g$ (bosons) or $\frac{1}{2}g$ (fermions)

Thermodynamic properties

• Effective matter density: $\rho = \frac{u}{c^2} = \frac{\pi^2}{30\hbar^3 c^5} g_*(kT)^4$

• Pressure:

$$p = \frac{1}{3}u = \frac{\pi^2}{90\hbar^3 c^3} g_*(kT)^4$$

• Entropy density:

$$s = \int_0^u \frac{du}{T} = \frac{2\pi^2}{45\hbar^3 c^3} g_* k^4 T^3$$

Expansion of Universe

Friedmann equation relating H to T:

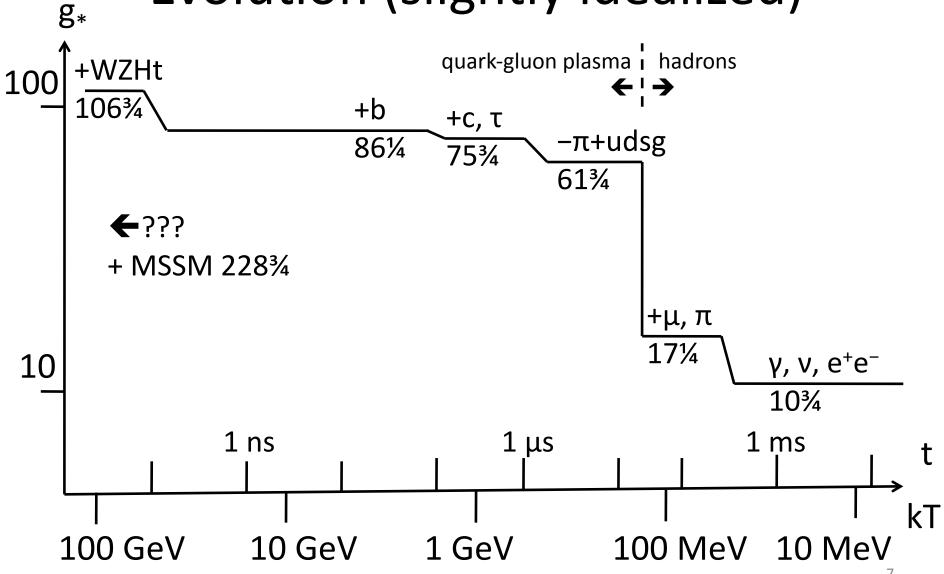
$$H^{2} = \frac{8}{3}\pi G\rho = \frac{4\pi^{2}G}{45\hbar^{3}c^{5}}g_{*}(kT)^{4}$$

• Solution: $H \sim T^2 \sim a^{-2} \implies a \sim t^{1/2} \implies H=1/(2t)$.

$$t = \frac{3\sqrt{5}\hbar^{3/2}c^{5/2}}{4\pi G^{1/2}g_*^{1/2}(kT)^2}$$

More convenient form:

$$t = \frac{1}{\sqrt{g_*}} \left(\frac{1.56 \text{ MeV}}{kT} \right)^2 \text{ sec}$$


What is g_{*}?

- Consider the Universe at t~1 second.
- Photons only: g_{*}=2.
- Also neutrinos: 3 flavors, $\times 2$ for antineutrinos: $\frac{1}{3} \times 3 \times 2 = \frac{21}{4}$.
- At 3kT≥m_ec², e⁺e⁻ are "massless." 2 spins each:

$$\frac{7}{8} \times 2 \times 2 = \frac{7}{2}$$
.

• At MeV temperatures, $g_* = 43/4$.

Evolution (slightly idealized)

Neutrino Decoupling

Neutrinos have weak interactions with e⁺e⁻:

$$n_{\text{e+e-}} \sim 5 \times 10^{31} (kT)_{\text{MeV}}^3 \text{ cm}^{-3}$$

 $\sigma_{\text{weak}} \sim 10^{-44} E_{\text{MeV}}^2 \text{ cm}^2$

 Typical E ~ 3kT so can find the number of neutrino interactions in the lifetime of the Universe:

$$n \sigma ct \sim 0.1 (kT)_{\text{MeV}}^5$$

• At kT~1.6 MeV, universe transitions from being neutrino-opaque to transparent.

Epoch of e⁺e⁻ Annihilation

 At kT<m_ec² almost all the electrons and positrons annihilate. (~1ppb more e⁻ than e⁺. These few e⁻ survive.)

$$e^{+} + e^{-} \rightarrow \begin{cases} \geq 2\gamma & \sim 100\% \\ v_{e} + \overline{v}_{e} & \text{(almost) neglgible} \end{cases}$$

- Energy of annihilation heats the photons but not the neutrinos, so $T_v > T_v$.
- Can do computation assuming annihilation is adiabatic (conserves entropy of $e^+e^-\gamma$).

Annihilation Part 2

Entropy before annihilation:

$$s(e^{\pm}\gamma) = \frac{2\pi^2}{45\hbar^3 c^3} g_*(e^{\pm}\gamma) k^4 T_v^3 = \frac{11\pi^2}{45\hbar^3 c^3} k^4 T_v^3$$

Entropy after annihilation:

$$s(\gamma) = \frac{2\pi^2}{45\hbar^3 c^3} g_*(\gamma) k^4 T_{\gamma}^3 = \frac{4\pi^2}{45\hbar^3 c^3} k^4 T_{\gamma}^3$$

Equating gives:

$$T_{\gamma} = \sqrt[3]{\frac{11}{4}}T_{\nu}$$

(Remains true since both temperatures scale as 1/a.)

Post-annihilation

 Can combine neutrino and photon energy densities to get radiation energy density:

$$u = \frac{\pi^2}{30\hbar^3 c^3} \left[2(kT_{\gamma})^4 + \frac{21}{4} (kT_{\nu})^4 \right] = 1.68 \frac{\pi^2 (kT_{\gamma})^4}{15\hbar^3 c^3}$$

- Factor of 1.68 from neutrinos. Affects BBN, CMB, etc.
- Equivalent to "effective" g_{*}=3.36.
- From temperature ratio, $T_v = 1.95(1+z)$ K.
- They're still here today: ~ 300/cm³.

Nucleosynthesis

Universe has net baryon number:

$$\eta = \frac{\text{baryons} - \text{antibaryons}}{\text{photons}} \sim 6 \times 10^{-10}$$

- We don't know why.
- At high temperature the thermodynamically favored state of baryons is p + n.
- At low temperature the favored state is ⁵⁶Fe.
- Nucleosynthesis is process of forming the heavier nuclei from p+n. Started in Big Bang, continues today in stars.

Primordial nucleosynthesis

- The process:
 - 1. n/p ratio determined at neutrino decoupling
 - 2. Universe expands/cools, some neutrons decay
 - 3. Assembly of D, ³He, ⁴He, ⁷Li
- Nuclear processing is not finished after BBN, e.g. heavy elements are produced in stars. This more recent processing must be corrected/avoided to infer primordial abundances.

The initial n/p ratio

 Before neutrino decoupling, neutrons are kept in equilibrium:

$$n + e^{+} \iff p^{+} + \overline{\nu}_{e}$$

$$n + \nu_{e} \iff p^{+} + e^{-}$$

• Equilibrium ratio

$$n: p = e^{-Q/kT}$$

where $Q = (m_n - m_p)c^2 = 1.293 \text{ MeV}.$

• n:p=1:1 at high T, then starts decreasing.

The initial n/p ratio (Part II)

- Neutrino decoupling at kT ~ 1.6 MeV would imply n:p=0.4.
- More detailed calculation gives n:p≈0.15.
- Neutron has a half-life of ~11 minutes.

$$n \rightarrow p^+ + e^- + \overline{\nu}_e$$

Therefore the neutron abundance declines:

$$n:(n+p) \approx \frac{0.15}{2^{t/11\,\text{min}}}$$

Deuterium (Part I)

 Deuterium is the simplest nucleus. Binding energy is B = 2.22 MeV.

$$n + p^+ \Leftrightarrow D^+ + \gamma$$

Saha-like equation for its abundance:

$$\frac{n(D^{+})}{n_{p}n_{n}} = \frac{3}{4} \left(\frac{2\pi\hbar^{2}}{m_{\text{red}}kT} \right)^{3/2} e^{B/kT}$$

Compare with total baryon abundance:

$$n_b = 5.6 \times 10^{20} \Omega_b h^2 T_9^3 \text{ cm}^{-3}$$

Deuterium (Part II)

• Using notation $X_i=n_i/n_b$, and assuming the universe is mostly p (85%) and n (15%) we get

$$X(D^+) \approx 5 \times 10^{-14} \Omega_b h^2 T_9^{3/2} e^{25.8/T_9}$$

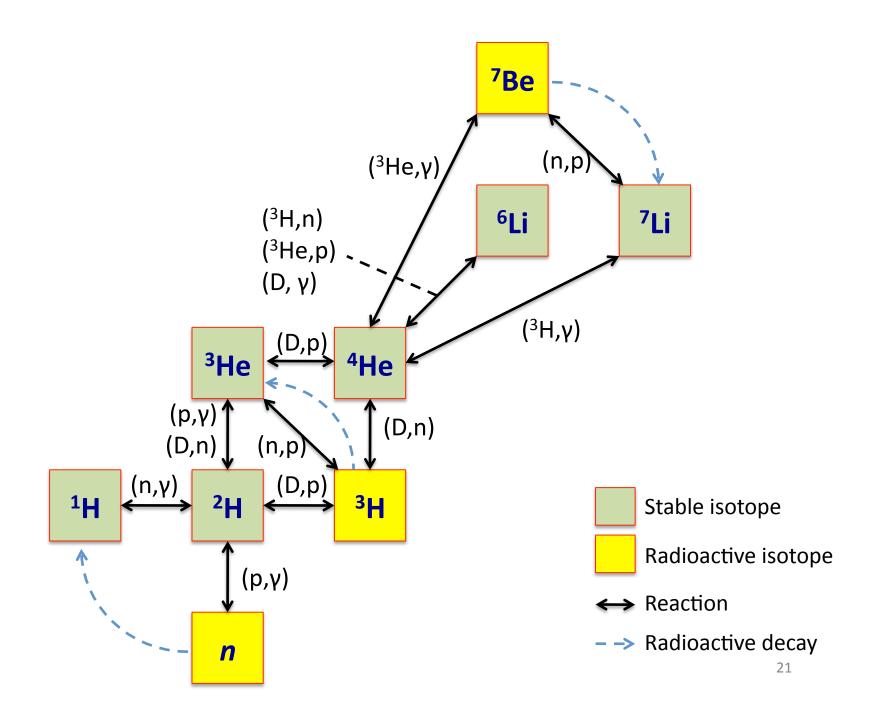
• Deuterium abundance grows exponentially. Would become of order unity at T_9 ~0.7 (t ~ 3 min) except that deuterium can burn to heavier nuclei.

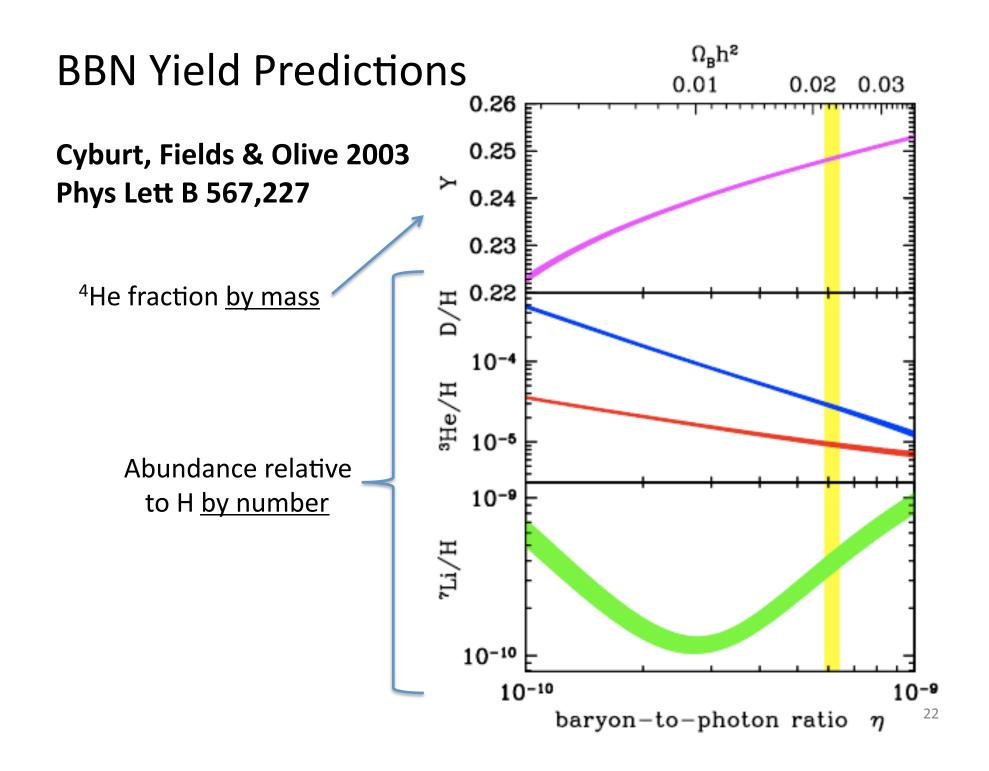
Helium

Deuterium consumption:

 When deuterium reaches ~1%, these reactions package most of the available neutrons into the very tightly bound ⁴He.

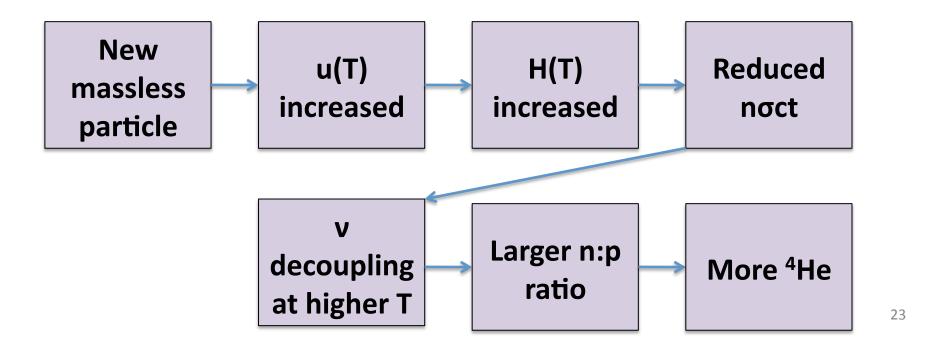
What happens next


At t ~ 3 minutes, 13% of baryons are neutrons.
 Packaged into ⁴He, we get Y~0.26 (⁴He fraction by mass). Most of the rest is ¹H.


• No new D is produced once free neutrons are gone. Deuterium is burned via D+D and D+p. A small amount, $X_D^2 \times 10^{-5}$, survives.

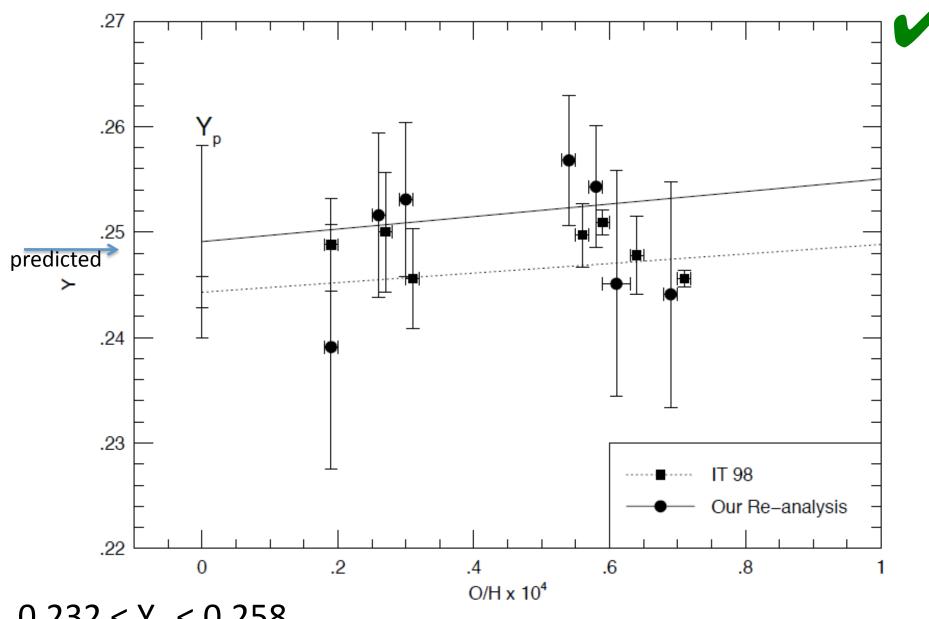
• Some 3 H and 3 He are left over (total $X_{3}^{\sim}10^{-5}$).

End Game


- Some A=7 nuclei $(X_7^4 \times 10^{-10})$ are produced by 3 He+ 4 He and 3 H+ 4 He.
- ⁶Li produced in much smaller amounts since it is fragile $(X_6 \sim 10^{-14})$.
- Heavy element production e.g. $3\alpha \rightarrow ^{12}C$ negligible at BBN densities (10^{-5} g/cm³).
- Radioactive nuclei (n, ³H, ⁷Be) decay.

Dependence on Cosmology

• 4 He: Determined by n:p ratio, so very sensitive to physics at neutrino decoupling, e.g. new massless particles. Slightly sensitive to $\Omega_b h^2$.



Dependence on Cosmology

- 2 H and 3 He: Leftovers of incomplete H burning. Decrease for larger baryon density Ω_b h 2 .
- 7 Li: Non-monotonic behavior in $\Omega_{b}h^{2}$:
 - Low $\Omega_b h^2$: direct production of ⁷Li, destroyed by ⁷Li+p at high densities.
 - High Ω_b h²: ⁷Be can be produced, decays to ⁷Li.
- ⁶Li: Primordial contribution should be undetectable.

⁴He

- Prediction: Y = 0.2482±0.0003±0.0006
- Usually estimate He abundance from H II region spectra (H I and He I recombination lines).
 - Determine temperature (self-consistent or using [O III]).
 - Model collisional excitation, fluorescence.
 - Optical depth effects. He I 2^3S_1 is metastable.
 - Model reddening.
 - Model stellar He I absorption.
 - Ionization correction factors (H II and He I can coexist).
 - Extrapolate to zero metallicity to get primordial value.

 $0.232 < Y_p < 0.258$ Olive & Skillman 2004 ApJ 617,29

Examples of Deuterium Measurements

Location	D/H (ppm)	Method
Earth	150	
Venus	16000±2000	Mass spec. Donahue et al 1982
Mars	900±400	IR lines (HDO/H ₂ O) Owen et al 1988
Jupiter	22—50 50±20	IR lines (CH ₃ D/CH ₄) Kunde et al 1982 Mass spec. Niemann et al 1996
Saturn	4—29	IR lines (CH ₃ D/CH ₄) Courtin et al 1984
Local ISM	~ 7 – 20	Absorption lines in stellar spectra. Depends on line of sight; see tabulation by Linsky et al 2006
Lyman-α absorbers (IGM)	28±4	H vs D Lyman absorption lines in QSO spectra Kirkman et al 2003

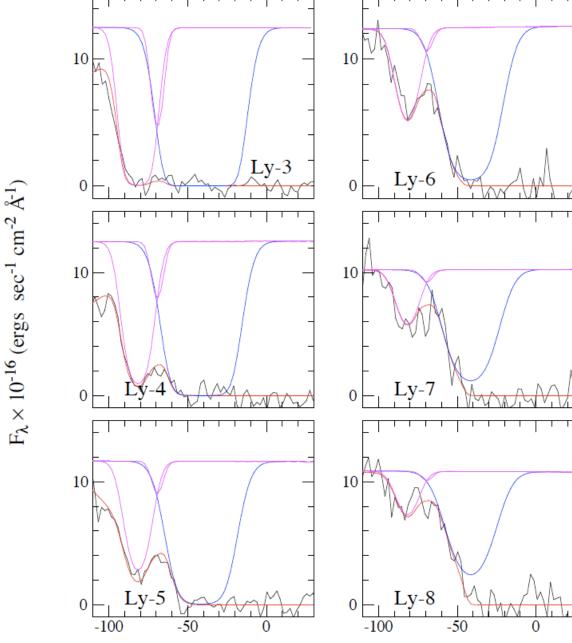
Warnings on D/H

 Not all D/H is the primordial value, or even that at the formation of the solar system.

Problems:

- Astration: burning of D to ³He etc. in stars.
- Chemical fractionation: At low temperatures D binds more tightly to molecules than H due to vibrational zero point energy.

$$XH^+ + D \rightarrow XD^+ + H$$


Fractionation due to depth of planetary gravity well.
 (This is why Jupiter was once used for BBN D/H.)

Intergalactic D/H

- Probably most reliable method is low-metallicity quasar absorption line systems.
 - Little processing by stars
 - Less opportunity to hide deuterium in molecules or dust grains
- Reduced mass of e⁻D⁺ is greater than e⁻p⁺ by 1 part in 3600, rescaling all hydrogenic energy levels. Equivalent to velocity shift of c/3600 = 80km/s.
- IGM value 28±4 ppm agrees with predicted 25.7 (+1.7)(-1.3) ppm.

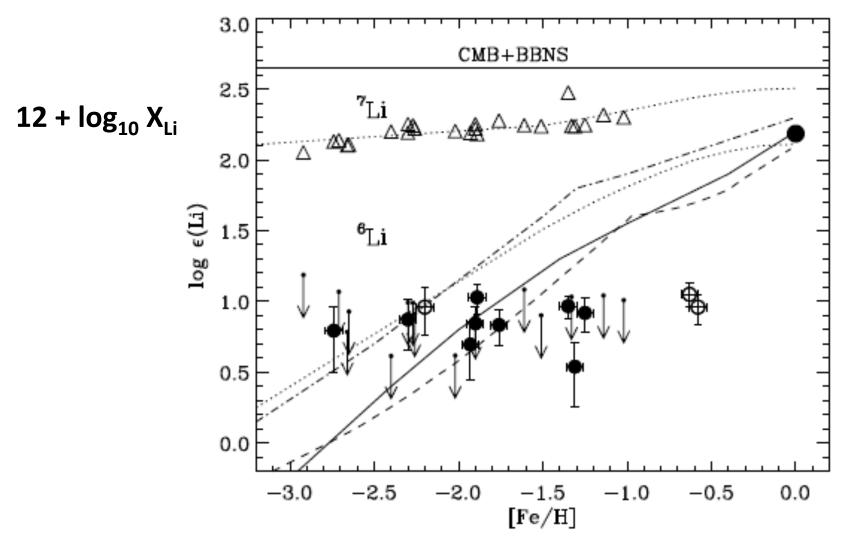
Kirkman et al 2003 ApJS 149, 1 Q1243+3047 z_{abs} = 2.53

 $Velocity \ (km \ se\tilde{c}^l)$

³He

• Difficulties:

- Can be both produced and destroyed in stars.
- No IGM measurement.
- Most(?) accepted measurement is 3 He $^{+}$ hyperfine line (λ =3.46cm) low-metallicity H II regions. Bania et al (2002) find 3 He/H < 15 ppm.
 - Directly observed 11±2 ppm, argue that stars would lead to net increase in ³He.
- Predicted from WMAP baryon abundance: 3 He/H = 10.5±0.3±0.3 ppm.



- Aside: Jupiter atmosphere ratio 3 He: 4 He = $(1.1\pm0.2)\times10^{-4}$ [Niemann et al 1996].

Lithium

- Can be measured in low-metallicity stars.
 - Two multiplets available for Li I: 6708Å (2s—2p)
 and 6104Å (2p—3d).
 - ⁷Li destroyed at high T, ⁷Li + p → 2⁴He. Avoid lowmass stars due to deep convective zone.
 - Slight isotope shift of ⁶Li vs. ⁷Li.
- Li can also be produced via cosmic rays:
 - Spallation of CNO elements (also gives Be, B)
 - ⁴He + ⁴He collisions at low energies.

Li abundance evolution

The Lithium Problem(s)

- 7 Li: Predicted (5.2±0.7)×10⁻¹⁰.
 - See update from Cyburt, Fields, Olive 2008.
- Observations give lower values
 - e.g. $(1.1-1.5) \times 10^{-10}$ from Asplund et al. 2006.
 - Other determinations are typically $\sim (1-2)\times 10^{-10}$.

Solutions

- The ⁷Li problem:
 - Errors in nuclear reaction rates?
 - Depletion in convection zone?
 - Stellar atmosphere modeling?
 - Destroyed in early generation of stars?
 - New physics?