
Databases	101

Matthew	J.	Graham
CACR

Methods	of	Computational	Science
Caltech, 3	May	2011

matthew graham

fliptrap

matthew graham

fliptrap

matthew graham

fliptrap

matthew graham

fliptrap

matthew graham

what	is	a	database?

A structured	collection	of	data	residing	on	a	computer	system
that	can	be	easily	accessed, managed	and	updated

Data	is	organised	according	to	a	database	model

A Database	Management	System	(DBMS) is	a	software	package
designed	to	store	and	manage	databases

matthew graham

why	use	a	dbms?

data	independence

efficient	and	concurrent	access

data	integrity, security	and	safety

uniform	data	administration

reduced	application	development	time

data	analysis	tools

matthew graham

scale	of	databases

"DBs	 own	 the	 sweet	 spot	 of
1GB to	 100TB"	 (Gray	&	Hey,
2006)

SQLite

MySQL,	PostgreSQL

SQLServer, Oracle

∗Hive, HadoopDB

matthew graham

data	models

A collection	of	concepts	describing	how	structured	data	is
represented	and	accessed

Within	a	data	model, the schema is	a	set	of	descriptions	of	a
particular	collection	of	data

The	schema	is	stored	in	a data	dictionary and	can	be
represented	in	SQL,	XML,	RDF,	etc.

In	semantics	a	data	model	is	equivalent	to	an	ontology	-	"a
formal, explicit	specification	of	a	shared	conceptualisation"

matthew graham

fliptrap

matthew graham

flat	(file)	model

Data	files	that	contain	records	with	no	structural	relationships

Additional	information	is	required	to	interpret	these	files	such
as	the	file	format	properties

Hollerith	1889	patent	"Art	of	Compiling	Statistics"	describes
how	every	US resident	can	be	represented	by	a	string	of	80
characters	and	numbers

Examples: delimited-separated	data, HTML table

matthew graham

relational	model

Data	is	organized	as	relations, attributes	and	domains

A relation	is	a	table	with	columns	(attributes)	and	rows	(tuples)

The	domain	is	the	set	of	values	that	the	attributes	are	allowed
to	take

Within	the	relation, each	row	is	unique, the	column	order	is
immaterial	and	each	row	contains	a	single	value	for	each	of	its
attributes

Proposed	by	E.	F.	Codd	in	1969/70

matthew graham

transactions

An	atomic	sequence	of	actions	(read/write)	in	the	database

Each	transaction	has	to	be	executed completely and	must	leave
the	database	in	a	consistent	state

If	the	transaction	fails	or	aborts	midway, the	database	is	"rolled
back"	to	its	initial	consistent	state

Example:
Authorise	Paypal	to	pay $100	for	my	eBay	purchase:
-	Debit	my	account $100
-	Credit	the	seller's	account $100

matthew graham

acid

By	definition, a	database	transaction	must	be:

Atomic: all	or	nothing

Consistent: no	integrity	constraints	violated

Isolated: does	not	 interfere	with	any	other
transaction

Durable: committed	 transaction	 effects
persist

matthew graham

concurrency

DBMS ensures	that	interleaved	transactions	coming	from
different	clients	do	not	cause	inconsistencies	in	the	data

It	converts	the	concurrent	transaction	set	into	a	new	set	that
can	be	executed	sequentially

Before	reading/writing	an	object, each	transaction	waits	for	a
lock on	the	object

Each	transaction	releases	all	its	locks	when	finished

matthew graham

locks

DMBS can	set	and	hold	multiple	locks	simultaneously	on
different	levels	of	the	physical	data	structure

Granularity: at	a	row	level, page	(a	basic	data	block), extent
(multiple	array	of	pages)	or	even	an	entire	table

Exclusive	vs. shared

Optimistic	vs. pessimistic

matthew graham

logs

Ensures	atomicity	of	transactions

Recovering	after	a	crash, effects	of	partially	executed
transactions	are	undone	using	the	log

Log	record:

-- Header	(transaction	ID,	timestamp, ...)
-- Item	ID
-- Type
-- Old	and	new	value

matthew graham

partitions

Horizontal: different	rows	in	different	tables

Vertical: different	columns	in	different	tables	(normalisation)

Range: rows	where	values	in	a	particular	column	are	inside	a
certain	range

List: rows	where	values	in	a	particular	column	match	a	list	of
values

Hash: rows	where	a	hash	function	returns	a	particular	value

matthew graham

structured	query	language

Appeared	in	1974	from	IBM

First	standard	published	in	1986; most	recent	in	2008

SQL92	is	taken	to	be	default	standard

Different	flavours:

Microsoft/Sybase Transact-SQL
MySQL MySQL
Oracle PL/SQL
PostgreSQL PL/pgSQL

matthew graham

create

CREATE DATABASE databaseName
CREATE TABLE tableName (name1	type1, name2	type2, . . .)

CREATE TABLE star (name varchar(20), ra float, dec float, vmag float)

Data	types:
• boolean, bit, tinyint, smallint, int, bigint;
• real/float, double, decimal;
• char, varchar, text, binary, blob, longblob;
• date, time, datetime, timestamp

CREATE TABLE star (name varchar(20) not null, ra float default 0, ...)

matthew graham

keys
CREATE TABLE star (name varchar(20), ra float, dec float, vmag float,

CONSTRAINT PRIMARY KEY (name))

A primary	key	is	a	unique	identifier	for	a	row	and	is
automatically	not	null

CREATE TABLE star (name varchar(20), ..., stellarType varchar(8),
CONSTRAINT stellarType_fk FOREIGN KEY (stellarType)
REFERENCES stellarTypes(id))

A foreign	key	is	a	referential	constraint	between	two	tables
identifying	a	column	in	one	table	that	refers	to	a	column	in
another	table.

matthew graham

insert
INSERT INTO tableName VALUES(val1, val2, . . .)

INSERT INTO star VALUES('Sirius', 101.287, -16.716, -1.47)

INSERT INTO star(name, vmag) VALUES('Canopus', -0.72)

INSERT INTO star
SELECT ...

matthew graham

delete

DELETE FROM tableName WHERE condition
TRUNCATE TABLE tableName
DROP TABLE tableName

DELETE FROM star WHERE name = 'Canopus'

DELETE FROM star WHERE name LIKE 'C_n%'

DELETE FROM star WHERE vmag > 0 OR dec < 0

DELETE FROM star WHERE vmag BETWEEN 0 and 5

matthew graham

update

UPDATE tableName SET columnName =	val1	WHERE condition

UPDATE star SET vmag = vmag + 0.5

UPDATE star SET vmag = -1.47 WHERE name LIKE 'Sirius'

matthew graham

select

SELECT selectionList FROM tableList WHERE condition
ORDER BY criteria

SELECT name, constellation FROM star WHERE dec > 0
ORDER by vmag

SELECT * FROM star WHERE ra BETWEEN 0 AND 90

SELECT DISTINCT constellation FROM star

SELECT name FROM star LIMIT 5
ORDER BY vmag

matthew graham

joins

Inner	join: combining	related	rows

SELECT * FROM star s INNER JOIN stellarTypes t ON s.stellarType = t.id

SELECT * FROM star s, stellarTypes t WHERE s.stellarType = t.id

Outer	join: each	row	does	not	need	a	matching	row

SELECT * from star s LEFT OUTER JOIN stellarTypes t ON s.stellarType = t.id

SELECT * from star s RIGHT OUTER JOIN stellarTypes t ON s.stellarType = t.id

SELECT * from star s FULL OUTER JOIN stellarTypes t ON s.stellarType = t.id

matthew graham

aggregate	functions

COUNT,	AVG,	MIN,	MAX,	SUM

SELECT COUNT(*) FROM star

SELECT AVG(vmag) FROM star

SELECT stellarType, MIN(vmag), MAX(vmag) FROM star
GROUP BY stellarType

SELECT stellarType, AVG(vmag), COUNT(id) FROM star
GROUP BY stellarType
HAVING vmag > 14

matthew graham

views

CREATE VIEW viewName AS . . .

CREATE VIEW region1View AS
SELECT * FROM star WHERE ra BETWEEN 150 AND 170

AND dec BETWEEN -10 AND 10

SELECT id FROM region1View WHERE vmag < 10

CREATE VIEW region2View AS
SELECT * FROM star s, stellarTypes t WHERE s.stellarType = t.id

AND ra BETWEEN 150 AND 170 AND dec BETWEEN -10 AND 10

SELECT id FROM regionView2 WHERE vmag < 10 and stellarType LIKE 'A%'

matthew graham

indexes

CREATE INDEX indexName ON tableName(columns)

CREATE INDEX vmagIndex ON star(vmag)

A clustered	index	is	one	in	which	the	ordering	of	data	entries	is
the	same	as	the	ordering	of	data	records

Only	one	clustered	index	per	table	but	multiple	unclustered
indexes

Typically	implemented	as	B+	trees	but	alternate	types	such	as
bitmap	index	for	high	frequency	repeated	data

matthew graham

cursors
DECLARE cursorName CURSOR FOR SELECT ...
OPEN cursorName
FETCH cursorName INTO ...
CLOSE cursorName

A cursor	is	a	control	structure	for	successive	traversal	of	records
in	a	result	set

Slowest	way	of	accessing	data

matthew graham

cursors	example

For	each	row	in	the	result	set, update	the	relevant	stellar	model

DECLARE @name varchar(20)
DECLARE @mag float
DECLARE starCursor CURSOR FOR

SELECT name, AVG(vmag) FROM star
GROUP BY stellarType

OPEN starCursor
FETCH starCursor INTO @name, @mag
EXEC updateStellarModel @name, @mag / CALL updateStellarModel(@name, @mag)

CLOSE starCursor

matthew graham

triggers
CREATE TRIGGER triggerName ON
tableName ...

A trigger	 is	 procedural	 code	 that	 is
automatically	 executed	 in	 response	 to
certain	events	on	a	particular	table:
• INSERT
• UPDATE
• DELETE

CREATE TRIGGER starTrigger ON star FOR UPDATE AS
IF @@ROWCOUNT = 0 RETURN
IF UPDATE (vmag) EXEC refreshModels

GO

matthew graham

stored	procedures

CREATE PROCEDURE procedureName @param1	type, . . .
AS ...

CREATE PROCEDURE findNearestNeighbour @starName varchar(20) AS
BEGIN

DECLARE @ra, @dec float
DECLARE @name varchar(20)
SELECT @ra = ra, @dec = dec FROM star WHERE name LIKE @starName
SELECT name FROM getNearestNeighbour(@ra, @dec)

END

EXEC findNearestNeighbour 'Sirius'

matthew graham

normalisation

First	normal	form: no	repeating	elements	or	groups	of	elements
table	has	a	unique	key	(and	no	nullable	columns)

Second	normal	form: no	columns	dependent	on	only	part	of
the	key

Star	Name Constellation Area

Third	normal	form: no	columns	dependent	on	other	non-key
columns

Star	Name Magnitude Flux

matthew graham

programming

Java

import java.sql.*
...
String dbURL = "jdbc:mysql://127.0.0.1:1234/test";
Connection conn = DriverManager.getConnection(dbUrl, "mjg", "mjg");
Statement stmt = conn.createStatement();
ResultSet res = stmt.executeQuery("SELECT * FROM star");
...
conn.close();

matthew graham

programming

Python:

import MySQLdb
Con = MySQLdb.connect(host="127.0.0.1", port=1234, user="mjg",

passwd="mjg", db="test")
Cursor = Con.cursor()
sql = "SELECT * FROM star"
Cursor.execute(sql)
Results = Cursor.fetchall()
...
Con.close()

matthew graham

	Fliptrap
	Fliptrap
	Fliptrap
	Fliptrap
	what is a database?
	why use a dbms?
	scale of databases
	data models
	Fliptrap
	flat (file) model
	relational model
	transactions
	ACID
	concurrency
	locks
	logs
	partitions
	structured query language
	create
	keys
	insert
	delete
	update
	select
	joins
	aggregate functions
	views
	indexes
	cursors
	cursors example
	triggers
	stored procedures
	normalisation
	programming
	programming

